Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/doc/html/MPI-Plan-Creation.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/doc/html/MPI-Plan-Creation.html Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,329 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> +<html> +<!-- This manual is for FFTW +(version 3.3.8, 24 May 2018). + +Copyright (C) 2003 Matteo Frigo. + +Copyright (C) 2003 Massachusetts Institute of Technology. + +Permission is granted to make and distribute verbatim copies of this +manual provided the copyright notice and this permission notice are +preserved on all copies. + +Permission is granted to copy and distribute modified versions of this +manual under the conditions for verbatim copying, provided that the +entire resulting derived work is distributed under the terms of a +permission notice identical to this one. + +Permission is granted to copy and distribute translations of this manual +into another language, under the above conditions for modified versions, +except that this permission notice may be stated in a translation +approved by the Free Software Foundation. --> +<!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> +<head> +<title>FFTW 3.3.8: MPI Plan Creation</title> + +<meta name="description" content="FFTW 3.3.8: MPI Plan Creation"> +<meta name="keywords" content="FFTW 3.3.8: MPI Plan Creation"> +<meta name="resource-type" content="document"> +<meta name="distribution" content="global"> +<meta name="Generator" content="makeinfo"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> +<link href="index.html#Top" rel="start" title="Top"> +<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> +<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> +<link href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" rel="up" title="FFTW MPI Reference"> +<link href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" rel="next" title="MPI Wisdom Communication"> +<link href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" rel="prev" title="MPI Data Distribution Functions"> +<style type="text/css"> +<!-- +a.summary-letter {text-decoration: none} +blockquote.indentedblock {margin-right: 0em} +blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} +blockquote.smallquotation {font-size: smaller} +div.display {margin-left: 3.2em} +div.example {margin-left: 3.2em} +div.lisp {margin-left: 3.2em} +div.smalldisplay {margin-left: 3.2em} +div.smallexample {margin-left: 3.2em} +div.smalllisp {margin-left: 3.2em} +kbd {font-style: oblique} +pre.display {font-family: inherit} +pre.format {font-family: inherit} +pre.menu-comment {font-family: serif} +pre.menu-preformatted {font-family: serif} +pre.smalldisplay {font-family: inherit; font-size: smaller} +pre.smallexample {font-size: smaller} +pre.smallformat {font-family: inherit; font-size: smaller} +pre.smalllisp {font-size: smaller} +span.nolinebreak {white-space: nowrap} +span.roman {font-family: initial; font-weight: normal} +span.sansserif {font-family: sans-serif; font-weight: normal} +ul.no-bullet {list-style: none} +--> +</style> + + +</head> + +<body lang="en"> +<a name="MPI-Plan-Creation"></a> +<div class="header"> +<p> +Next: <a href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" accesskey="n" rel="next">MPI Wisdom Communication</a>, Previous: <a href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" accesskey="p" rel="prev">MPI Data Distribution Functions</a>, Up: <a href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" accesskey="u" rel="up">FFTW MPI Reference</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> +</div> +<hr> +<a name="MPI-Plan-Creation-1"></a> +<h4 class="subsection">6.12.5 MPI Plan Creation</h4> + +<a name="Complex_002ddata-MPI-DFTs"></a> +<h4 class="subsubheading">Complex-data MPI DFTs</h4> + +<p>Plans for complex-data DFTs (see <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>) are created by: +</p> +<a name="index-fftw_005fmpi_005fplan_005fdft_005f1d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-1"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005f3d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft"></a> +<a name="index-fftw_005fmpi_005fplan_005fmany_005fdft"></a> +<div class="example"> +<pre class="example">fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out, + MPI_Comm comm, int sign, unsigned flags); +fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1, + fftw_complex *in, fftw_complex *out, + MPI_Comm comm, int sign, unsigned flags); +fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, + fftw_complex *in, fftw_complex *out, + MPI_Comm comm, int sign, unsigned flags); +fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n, + fftw_complex *in, fftw_complex *out, + MPI_Comm comm, int sign, unsigned flags); +fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n, + ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock, + fftw_complex *in, fftw_complex *out, + MPI_Comm comm, int sign, unsigned flags); +</pre></div> + +<a name="index-MPI-communicator-2"></a> +<a name="index-collective-function-4"></a> +<p>These are similar to their serial counterparts (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>) +in specifying the dimensions, sign, and flags of the transform. The +<code>comm</code> argument gives an MPI communicator that specifies the set +of processes to participate in the transform; plan creation is a +collective function that must be called for all processes in the +communicator. The <code>in</code> and <code>out</code> pointers refer only to a +portion of the overall transform data (see <a href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>) +as specified by the ‘<samp>local_size</samp>’ functions in the previous +section. Unless <code>flags</code> contains <code>FFTW_ESTIMATE</code>, these +arrays are overwritten during plan creation as for the serial +interface. For multi-dimensional transforms, any dimensions <code>> +1</code> are supported; for one-dimensional transforms, only composite +(non-prime) <code>n0</code> are currently supported (unlike the serial +FFTW). Requesting an unsupported transform size will yield a +<code>NULL</code> plan. (As in the serial interface, highly composite sizes +generally yield the best performance.) +</p> +<a name="index-advanced-interface-6"></a> +<a name="index-FFTW_005fMPI_005fDEFAULT_005fBLOCK-2"></a> +<a name="index-stride-3"></a> +<p>The advanced-interface <code>fftw_mpi_plan_many_dft</code> additionally +allows you to specify the block sizes for the first dimension +(<code>block</code>) of the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> + input data and the first dimension +(<code>tblock</code>) of the n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> + transposed data (at intermediate +steps of the transform, and for the output if +<code>FFTW_TRANSPOSED_OUT</code> is specified in <code>flags</code>). These must +be the same block sizes as were passed to the corresponding +‘<samp>local_size</samp>’ function; you can pass <code>FFTW_MPI_DEFAULT_BLOCK</code> +to use FFTW’s default block size as in the basic interface. Also, the +<code>howmany</code> parameter specifies that the transform is of contiguous +<code>howmany</code>-tuples rather than individual complex numbers; this +corresponds to the same parameter in the serial advanced interface +(see <a href="Advanced-Complex-DFTs.html#Advanced-Complex-DFTs">Advanced Complex DFTs</a>) with <code>stride = howmany</code> and +<code>dist = 1</code>. +</p> +<a name="MPI-flags"></a> +<h4 class="subsubheading">MPI flags</h4> + +<p>The <code>flags</code> can be any of those for the serial FFTW +(see <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>), and in addition may include one or more of +the following MPI-specific flags, which improve performance at the +cost of changing the output or input data formats. +</p> +<ul> +<li> <a name="index-FFTW_005fMPI_005fSCRAMBLED_005fOUT-2"></a> +<a name="index-FFTW_005fMPI_005fSCRAMBLED_005fIN-2"></a> +<code>FFTW_MPI_SCRAMBLED_OUT</code>, <code>FFTW_MPI_SCRAMBLED_IN</code>: valid for +1d transforms only, these flags indicate that the output/input of the +transform are in an undocumented “scrambled” order. A forward +<code>FFTW_MPI_SCRAMBLED_OUT</code> transform can be inverted by a backward +<code>FFTW_MPI_SCRAMBLED_IN</code> (times the usual 1/<i>N</i> normalization). +See <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>. + +</li><li> <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-2"></a> +<a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-2"></a> +<code>FFTW_MPI_TRANSPOSED_OUT</code>, <code>FFTW_MPI_TRANSPOSED_IN</code>: valid +for multidimensional (<code>rnk > 1</code>) transforms only, these flags +specify that the output or input of an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> + transform is +transposed to n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> +. See <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>. + +</li></ul> + +<a name="Real_002ddata-MPI-DFTs"></a> +<h4 class="subsubheading">Real-data MPI DFTs</h4> + +<a name="index-r2c-4"></a> +<p>Plans for real-input/output (r2c/c2r) DFTs (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>) are created by: +</p> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-1"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f3d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-1"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f3d"></a> +<a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r"></a> +<div class="example"> +<pre class="example">fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1, + double *in, fftw_complex *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1, + double *in, fftw_complex *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, + double *in, fftw_complex *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n, + double *in, fftw_complex *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1, + fftw_complex *in, double *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1, + fftw_complex *in, double *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, + fftw_complex *in, double *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n, + fftw_complex *in, double *out, + MPI_Comm comm, unsigned flags); +</pre></div> + +<p>Similar to the serial interface (see <a href="Real_002ddata-DFTs.html#Real_002ddata-DFTs">Real-data DFTs</a>), these +transform logically n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> + real data to/from n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) + complex +data, representing the non-redundant half of the conjugate-symmetry +output of a real-input DFT (see <a href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms">Multi-dimensional Transforms</a>). +However, the real array must be stored within a padded n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × [2 (n<sub>d-1</sub>/2 + 1)] + +array (much like the in-place serial r2c transforms, but here for +out-of-place transforms as well). Currently, only multi-dimensional +(<code>rnk > 1</code>) r2c/c2r transforms are supported (requesting a plan +for <code>rnk = 1</code> will yield <code>NULL</code>). As explained above +(see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>), the data +distribution of both the real and complex arrays is given by the +‘<samp>local_size</samp>’ function called for the dimensions of the +<em>complex</em> array. Similar to the other planning functions, the +input and output arrays are overwritten when the plan is created +except in <code>FFTW_ESTIMATE</code> mode. +</p> +<p>As for the complex DFTs above, there is an advance interface that +allows you to manually specify block sizes and to transform contiguous +<code>howmany</code>-tuples of real/complex numbers: +</p> +<a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fr2c"></a> +<a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fc2r"></a> +<div class="example"> +<pre class="example">fftw_plan fftw_mpi_plan_many_dft_r2c + (int rnk, const ptrdiff_t *n, ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + double *in, fftw_complex *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_many_dft_c2r + (int rnk, const ptrdiff_t *n, ptrdiff_t howmany, + ptrdiff_t iblock, ptrdiff_t oblock, + fftw_complex *in, double *out, + MPI_Comm comm, unsigned flags); +</pre></div> + +<a name="MPI-r2r-transforms"></a> +<h4 class="subsubheading">MPI r2r transforms</h4> + +<a name="index-r2r-4"></a> +<p>There are corresponding plan-creation routines for r2r +transforms (see <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>), currently supporting +multidimensional (<code>rnk > 1</code>) transforms only (<code>rnk = 1</code> will +yield a <code>NULL</code> plan): +</p> +<div class="example"> +<pre class="example">fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1, + double *in, double *out, + MPI_Comm comm, + fftw_r2r_kind kind0, fftw_r2r_kind kind1, + unsigned flags); +fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, + double *in, double *out, + MPI_Comm comm, + fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2, + unsigned flags); +fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n, + double *in, double *out, + MPI_Comm comm, const fftw_r2r_kind *kind, + unsigned flags); +fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n, + ptrdiff_t iblock, ptrdiff_t oblock, + double *in, double *out, + MPI_Comm comm, const fftw_r2r_kind *kind, + unsigned flags); +</pre></div> + +<p>The parameters are much the same as for the complex DFTs above, except +that the arrays are of real numbers (and hence the outputs of the +‘<samp>local_size</samp>’ data-distribution functions should be interpreted as +counts of real rather than complex numbers). Also, the <code>kind</code> +parameters specify the r2r kinds along each dimension as for the +serial interface (see <a href="Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds">Real-to-Real Transform Kinds</a>). See <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms">Other Multi-dimensional Real-data MPI Transforms</a>. +</p> +<a name="MPI-transposition"></a> +<h4 class="subsubheading">MPI transposition</h4> +<a name="index-transpose-5"></a> + +<p>FFTW also provides routines to plan a transpose of a distributed +<code>n0</code> by <code>n1</code> array of real numbers, or an array of +<code>howmany</code>-tuples of real numbers with specified block sizes +(see <a href="FFTW-MPI-Transposes.html#FFTW-MPI-Transposes">FFTW MPI Transposes</a>): +</p> +<a name="index-fftw_005fmpi_005fplan_005ftranspose-1"></a> +<a name="index-fftw_005fmpi_005fplan_005fmany_005ftranspose-1"></a> +<div class="example"> +<pre class="example">fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1, + double *in, double *out, + MPI_Comm comm, unsigned flags); +fftw_plan fftw_mpi_plan_many_transpose + (ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany, + ptrdiff_t block0, ptrdiff_t block1, + double *in, double *out, MPI_Comm comm, unsigned flags); +</pre></div> + +<a name="index-new_002darray-execution-2"></a> +<a name="index-fftw_005fmpi_005fexecute_005fr2r-1"></a> +<p>These plans are used with the <code>fftw_mpi_execute_r2r</code> new-array +execute function (see <a href="Using-MPI-Plans.html#Using-MPI-Plans">Using MPI Plans</a>), since they count as (rank +zero) r2r plans from FFTW’s perspective. +</p> +<hr> +<div class="header"> +<p> +Next: <a href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" accesskey="n" rel="next">MPI Wisdom Communication</a>, Previous: <a href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" accesskey="p" rel="prev">MPI Data Distribution Functions</a>, Up: <a href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" accesskey="u" rel="up">FFTW MPI Reference</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> +</div> + + + +</body> +</html>