Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/simd/common/n2fv_12.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/simd/common/n2fv_12.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,304 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:05:07 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ + +/* + * This function contains 48 FP additions, 20 FP multiplications, + * (or, 30 additions, 2 multiplications, 18 fused multiply/add), + * 33 stack variables, 2 constants, and 30 memory accesses + */ +#include "dft/simd/n2f.h" + +static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { + V T5, Ta, TG, TF, TB, Tt, Ti, Tm, TJ, TI, TA, Tp; + { + V T1, T6, T4, Tr, T9, Ts; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + { + V T2, T3, T7, T8; + T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + T4 = VADD(T2, T3); + Tr = VSUB(T3, T2); + T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T9 = VADD(T7, T8); + Ts = VSUB(T8, T7); + } + T5 = VFNMS(LDK(KP500000000), T4, T1); + Ta = VFNMS(LDK(KP500000000), T9, T6); + TG = VADD(T6, T9); + TF = VADD(T1, T4); + TB = VADD(Tr, Ts); + Tt = VSUB(Tr, Ts); + } + { + V Tk, Tn, Te, Tl, Th, To; + Tk = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Tn = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + { + V Tc, Td, Tf, Tg; + Tc = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + Te = VSUB(Tc, Td); + Tl = VADD(Td, Tc); + Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Th = VSUB(Tf, Tg); + To = VADD(Tf, Tg); + } + Ti = VADD(Te, Th); + Tm = VFNMS(LDK(KP500000000), Tl, Tk); + TJ = VADD(Tn, To); + TI = VADD(Tk, Tl); + TA = VSUB(Te, Th); + Tp = VFNMS(LDK(KP500000000), To, Tn); + } + { + V TN, TO, TP, TQ, TT, TU; + { + V TH, TK, TL, TM; + TH = VSUB(TF, TG); + TK = VSUB(TI, TJ); + TN = VFNMSI(TK, TH); + STM2(&(xo[18]), TN, ovs, &(xo[2])); + TO = VFMAI(TK, TH); + STM2(&(xo[6]), TO, ovs, &(xo[2])); + TL = VADD(TF, TG); + TM = VADD(TI, TJ); + TP = VSUB(TL, TM); + STM2(&(xo[12]), TP, ovs, &(xo[0])); + TQ = VADD(TL, TM); + STM2(&(xo[0]), TQ, ovs, &(xo[0])); + } + { + V Tj, Tv, Tu, Tw, Tb, Tq, TR, TS; + Tb = VSUB(T5, Ta); + Tj = VFMA(LDK(KP866025403), Ti, Tb); + Tv = VFNMS(LDK(KP866025403), Ti, Tb); + Tq = VSUB(Tm, Tp); + Tu = VFNMS(LDK(KP866025403), Tt, Tq); + Tw = VFMA(LDK(KP866025403), Tt, Tq); + TR = VFNMSI(Tu, Tj); + STM2(&(xo[2]), TR, ovs, &(xo[2])); + STN2(&(xo[0]), TQ, TR, ovs); + TS = VFMAI(Tw, Tv); + STM2(&(xo[14]), TS, ovs, &(xo[2])); + STN2(&(xo[12]), TP, TS, ovs); + TT = VFMAI(Tu, Tj); + STM2(&(xo[22]), TT, ovs, &(xo[2])); + TU = VFNMSI(Tw, Tv); + STM2(&(xo[10]), TU, ovs, &(xo[2])); + } + { + V TC, TE, Tz, TD, Tx, Ty; + TC = VMUL(LDK(KP866025403), VSUB(TA, TB)); + TE = VMUL(LDK(KP866025403), VADD(TB, TA)); + Tx = VADD(T5, Ta); + Ty = VADD(Tm, Tp); + Tz = VSUB(Tx, Ty); + TD = VADD(Tx, Ty); + { + V TV, TW, TX, TY; + TV = VFMAI(TC, Tz); + STM2(&(xo[4]), TV, ovs, &(xo[0])); + STN2(&(xo[4]), TV, TO, ovs); + TW = VFNMSI(TE, TD); + STM2(&(xo[16]), TW, ovs, &(xo[0])); + STN2(&(xo[16]), TW, TN, ovs); + TX = VFNMSI(TC, Tz); + STM2(&(xo[20]), TX, ovs, &(xo[0])); + STN2(&(xo[20]), TX, TT, ovs); + TY = VFMAI(TE, TD); + STM2(&(xo[8]), TY, ovs, &(xo[0])); + STN2(&(xo[8]), TY, TU, ovs); + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {30, 2, 18, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_12) (planner *p) { + X(kdft_register) (p, n2fv_12, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name n2fv_12 -with-ostride 2 -include dft/simd/n2f.h -store-multiple 2 */ + +/* + * This function contains 48 FP additions, 8 FP multiplications, + * (or, 44 additions, 4 multiplications, 4 fused multiply/add), + * 33 stack variables, 2 constants, and 30 memory accesses + */ +#include "dft/simd/n2f.h" + +static void n2fv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT i; + const R *xi; + R *xo; + xi = ri; + xo = ro; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) { + V T5, Ta, TJ, Ty, Tq, Tp, Tg, Tl, TI, TA, Tz, Tu; + { + V T1, T6, T4, Tw, T9, Tx; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + { + V T2, T3, T7, T8; + T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + T4 = VADD(T2, T3); + Tw = VSUB(T3, T2); + T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + T9 = VADD(T7, T8); + Tx = VSUB(T8, T7); + } + T5 = VADD(T1, T4); + Ta = VADD(T6, T9); + TJ = VADD(Tw, Tx); + Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); + Tq = VFNMS(LDK(KP500000000), T9, T6); + Tp = VFNMS(LDK(KP500000000), T4, T1); + } + { + V Tc, Th, Tf, Ts, Tk, Tt; + Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + { + V Td, Te, Ti, Tj; + Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + Tf = VADD(Td, Te); + Ts = VSUB(Te, Td); + Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Tk = VADD(Ti, Tj); + Tt = VSUB(Tj, Ti); + } + Tg = VADD(Tc, Tf); + Tl = VADD(Th, Tk); + TI = VADD(Ts, Tt); + TA = VFNMS(LDK(KP500000000), Tk, Th); + Tz = VFNMS(LDK(KP500000000), Tf, Tc); + Tu = VMUL(LDK(KP866025403), VSUB(Ts, Tt)); + } + { + V TN, TO, TP, TQ, TR, TS; + { + V Tb, Tm, Tn, To; + Tb = VSUB(T5, Ta); + Tm = VBYI(VSUB(Tg, Tl)); + TN = VSUB(Tb, Tm); + STM2(&(xo[18]), TN, ovs, &(xo[2])); + TO = VADD(Tb, Tm); + STM2(&(xo[6]), TO, ovs, &(xo[2])); + Tn = VADD(T5, Ta); + To = VADD(Tg, Tl); + TP = VSUB(Tn, To); + STM2(&(xo[12]), TP, ovs, &(xo[0])); + TQ = VADD(Tn, To); + STM2(&(xo[0]), TQ, ovs, &(xo[0])); + } + { + V Tv, TE, TC, TD, Tr, TB, TT, TU; + Tr = VSUB(Tp, Tq); + Tv = VSUB(Tr, Tu); + TE = VADD(Tr, Tu); + TB = VSUB(Tz, TA); + TC = VBYI(VADD(Ty, TB)); + TD = VBYI(VSUB(Ty, TB)); + TR = VSUB(Tv, TC); + STM2(&(xo[10]), TR, ovs, &(xo[2])); + TS = VSUB(TE, TD); + STM2(&(xo[22]), TS, ovs, &(xo[2])); + TT = VADD(TC, Tv); + STM2(&(xo[14]), TT, ovs, &(xo[2])); + STN2(&(xo[12]), TP, TT, ovs); + TU = VADD(TD, TE); + STM2(&(xo[2]), TU, ovs, &(xo[2])); + STN2(&(xo[0]), TQ, TU, ovs); + } + { + V TK, TM, TH, TL, TF, TG; + TK = VBYI(VMUL(LDK(KP866025403), VSUB(TI, TJ))); + TM = VBYI(VMUL(LDK(KP866025403), VADD(TJ, TI))); + TF = VADD(Tp, Tq); + TG = VADD(Tz, TA); + TH = VSUB(TF, TG); + TL = VADD(TF, TG); + { + V TV, TW, TX, TY; + TV = VSUB(TH, TK); + STM2(&(xo[20]), TV, ovs, &(xo[0])); + STN2(&(xo[20]), TV, TS, ovs); + TW = VADD(TL, TM); + STM2(&(xo[8]), TW, ovs, &(xo[0])); + STN2(&(xo[8]), TW, TR, ovs); + TX = VADD(TH, TK); + STM2(&(xo[4]), TX, ovs, &(xo[0])); + STN2(&(xo[4]), TX, TO, ovs); + TY = VSUB(TL, TM); + STM2(&(xo[16]), TY, ovs, &(xo[0])); + STN2(&(xo[16]), TY, TN, ovs); + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 12, XSIMD_STRING("n2fv_12"), {44, 4, 4, 0}, &GENUS, 0, 2, 0, 0 }; + +void XSIMD(codelet_n2fv_12) (planner *p) { + X(kdft_register) (p, n2fv_12, &desc); +} + +#endif