Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/scalar/codelets/t1_6.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/scalar/codelets/t1_6.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,295 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:04:13 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */ + +/* + * This function contains 46 FP additions, 32 FP multiplications, + * (or, 24 additions, 10 multiplications, 22 fused multiply/add), + * 31 stack variables, 2 constants, and 24 memory accesses + */ +#include "dft/scalar/t.h" + +static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { + E T1, TX, T7, TW, Tl, TR, TB, TJ, Ty, TS, TC, TO; + T1 = ri[0]; + TX = ii[0]; + { + E T3, T6, T4, TV, T2, T5; + T3 = ri[WS(rs, 3)]; + T6 = ii[WS(rs, 3)]; + T2 = W[4]; + T4 = T2 * T3; + TV = T2 * T6; + T5 = W[5]; + T7 = FMA(T5, T6, T4); + TW = FNMS(T5, T3, TV); + } + { + E Ta, Td, Tb, TF, Tg, Tj, Th, TH, T9, Tf; + Ta = ri[WS(rs, 2)]; + Td = ii[WS(rs, 2)]; + T9 = W[2]; + Tb = T9 * Ta; + TF = T9 * Td; + Tg = ri[WS(rs, 5)]; + Tj = ii[WS(rs, 5)]; + Tf = W[8]; + Th = Tf * Tg; + TH = Tf * Tj; + { + E Te, TG, Tk, TI, Tc, Ti; + Tc = W[3]; + Te = FMA(Tc, Td, Tb); + TG = FNMS(Tc, Ta, TF); + Ti = W[9]; + Tk = FMA(Ti, Tj, Th); + TI = FNMS(Ti, Tg, TH); + Tl = Te - Tk; + TR = TG + TI; + TB = Te + Tk; + TJ = TG - TI; + } + } + { + E Tn, Tq, To, TK, Tt, Tw, Tu, TM, Tm, Ts; + Tn = ri[WS(rs, 4)]; + Tq = ii[WS(rs, 4)]; + Tm = W[6]; + To = Tm * Tn; + TK = Tm * Tq; + Tt = ri[WS(rs, 1)]; + Tw = ii[WS(rs, 1)]; + Ts = W[0]; + Tu = Ts * Tt; + TM = Ts * Tw; + { + E Tr, TL, Tx, TN, Tp, Tv; + Tp = W[7]; + Tr = FMA(Tp, Tq, To); + TL = FNMS(Tp, Tn, TK); + Tv = W[1]; + Tx = FMA(Tv, Tw, Tu); + TN = FNMS(Tv, Tt, TM); + Ty = Tr - Tx; + TS = TL + TN; + TC = Tr + Tx; + TO = TL - TN; + } + } + { + E TP, T8, Tz, TE; + TP = TJ - TO; + T8 = T1 - T7; + Tz = Tl + Ty; + TE = FNMS(KP500000000, Tz, T8); + ri[WS(rs, 3)] = T8 + Tz; + ri[WS(rs, 1)] = FMA(KP866025403, TP, TE); + ri[WS(rs, 5)] = FNMS(KP866025403, TP, TE); + } + { + E T14, T11, T12, T13; + T14 = Ty - Tl; + T11 = TX - TW; + T12 = TJ + TO; + T13 = FNMS(KP500000000, T12, T11); + ii[WS(rs, 1)] = FMA(KP866025403, T14, T13); + ii[WS(rs, 3)] = T12 + T11; + ii[WS(rs, 5)] = FNMS(KP866025403, T14, T13); + } + { + E TT, TA, TD, TQ; + TT = TR - TS; + TA = T1 + T7; + TD = TB + TC; + TQ = FNMS(KP500000000, TD, TA); + ri[0] = TA + TD; + ri[WS(rs, 4)] = FMA(KP866025403, TT, TQ); + ri[WS(rs, 2)] = FNMS(KP866025403, TT, TQ); + } + { + E T10, TU, TY, TZ; + T10 = TC - TB; + TU = TR + TS; + TY = TW + TX; + TZ = FNMS(KP500000000, TU, TY); + ii[0] = TU + TY; + ii[WS(rs, 4)] = FMA(KP866025403, T10, TZ); + ii[WS(rs, 2)] = FNMS(KP866025403, T10, TZ); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 6}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, {24, 10, 22, 0}, 0, 0, 0 }; + +void X(codelet_t1_6) (planner *p) { + X(kdft_dit_register) (p, t1_6, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */ + +/* + * This function contains 46 FP additions, 28 FP multiplications, + * (or, 32 additions, 14 multiplications, 14 fused multiply/add), + * 23 stack variables, 2 constants, and 24 memory accesses + */ +#include "dft/scalar/t.h" + +static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { + E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC; + { + E T1, TN, T6, TM; + T1 = ri[0]; + TN = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 3)]; + T5 = ii[WS(rs, 3)]; + T2 = W[4]; + T4 = W[5]; + T6 = FMA(T2, T3, T4 * T5); + TM = FNMS(T4, T3, T2 * T5); + } + T7 = T1 - T6; + TS = TN - TM; + Tv = T1 + T6; + TO = TM + TN; + } + { + E Tn, TD, Ts, TE; + { + E Tk, Tm, Tj, Tl; + Tk = ri[WS(rs, 4)]; + Tm = ii[WS(rs, 4)]; + Tj = W[6]; + Tl = W[7]; + Tn = FMA(Tj, Tk, Tl * Tm); + TD = FNMS(Tl, Tk, Tj * Tm); + } + { + E Tp, Tr, To, Tq; + Tp = ri[WS(rs, 1)]; + Tr = ii[WS(rs, 1)]; + To = W[0]; + Tq = W[1]; + Ts = FMA(To, Tp, Tq * Tr); + TE = FNMS(Tq, Tp, To * Tr); + } + Tt = Tn - Ts; + TJ = TD + TE; + Tx = Tn + Ts; + TF = TD - TE; + } + { + E Tc, TA, Th, TB; + { + E T9, Tb, T8, Ta; + T9 = ri[WS(rs, 2)]; + Tb = ii[WS(rs, 2)]; + T8 = W[2]; + Ta = W[3]; + Tc = FMA(T8, T9, Ta * Tb); + TA = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 5)]; + Tg = ii[WS(rs, 5)]; + Td = W[8]; + Tf = W[9]; + Th = FMA(Td, Te, Tf * Tg); + TB = FNMS(Tf, Te, Td * Tg); + } + Ti = Tc - Th; + TI = TA + TB; + Tw = Tc + Th; + TC = TA - TB; + } + { + E TG, Tu, Tz, TR, TT, TU; + TG = KP866025403 * (TC - TF); + Tu = Ti + Tt; + Tz = FNMS(KP500000000, Tu, T7); + ri[WS(rs, 3)] = T7 + Tu; + ri[WS(rs, 1)] = Tz + TG; + ri[WS(rs, 5)] = Tz - TG; + TR = KP866025403 * (Tt - Ti); + TT = TC + TF; + TU = FNMS(KP500000000, TT, TS); + ii[WS(rs, 1)] = TR + TU; + ii[WS(rs, 3)] = TT + TS; + ii[WS(rs, 5)] = TU - TR; + } + { + E TK, Ty, TH, TQ, TL, TP; + TK = KP866025403 * (TI - TJ); + Ty = Tw + Tx; + TH = FNMS(KP500000000, Ty, Tv); + ri[0] = Tv + Ty; + ri[WS(rs, 4)] = TH + TK; + ri[WS(rs, 2)] = TH - TK; + TQ = KP866025403 * (Tx - Tw); + TL = TI + TJ; + TP = FNMS(KP500000000, TL, TO); + ii[0] = TL + TO; + ii[WS(rs, 4)] = TQ + TP; + ii[WS(rs, 2)] = TP - TQ; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 6}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, {32, 14, 14, 0}, 0, 0, 0 }; + +void X(codelet_t1_6) (planner *p) { + X(kdft_dit_register) (p, t1_6, &desc); +} +#endif