Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/scalar/codelets/t1_10.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/scalar/codelets/t1_10.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,489 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:04:14 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */ + +/* + * This function contains 102 FP additions, 72 FP multiplications, + * (or, 48 additions, 18 multiplications, 54 fused multiply/add), + * 47 stack variables, 4 constants, and 40 memory accesses + */ +#include "dft/scalar/t.h" + +static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { + E T8, T23, T12, T1U, TM, TZ, T10, T1F, T1G, T1P, T16, T17, T18, T1s, T1x; + E T25, Tl, Ty, Tz, T1I, T1J, T1O, T13, T14, T15, T1h, T1m, T24; + { + E T1, T1T, T3, T6, T4, T1R, T2, T7, T1S, T5; + T1 = ri[0]; + T1T = ii[0]; + T3 = ri[WS(rs, 5)]; + T6 = ii[WS(rs, 5)]; + T2 = W[8]; + T4 = T2 * T3; + T1R = T2 * T6; + T5 = W[9]; + T7 = FMA(T5, T6, T4); + T1S = FNMS(T5, T3, T1R); + T8 = T1 - T7; + T23 = T1T - T1S; + T12 = T1 + T7; + T1U = T1S + T1T; + } + { + E TF, T1p, TY, T1w, TL, T1r, TS, T1u; + { + E TB, TE, TC, T1o, TA, TD; + TB = ri[WS(rs, 4)]; + TE = ii[WS(rs, 4)]; + TA = W[6]; + TC = TA * TB; + T1o = TA * TE; + TD = W[7]; + TF = FMA(TD, TE, TC); + T1p = FNMS(TD, TB, T1o); + } + { + E TU, TX, TV, T1v, TT, TW; + TU = ri[WS(rs, 1)]; + TX = ii[WS(rs, 1)]; + TT = W[0]; + TV = TT * TU; + T1v = TT * TX; + TW = W[1]; + TY = FMA(TW, TX, TV); + T1w = FNMS(TW, TU, T1v); + } + { + E TH, TK, TI, T1q, TG, TJ; + TH = ri[WS(rs, 9)]; + TK = ii[WS(rs, 9)]; + TG = W[16]; + TI = TG * TH; + T1q = TG * TK; + TJ = W[17]; + TL = FMA(TJ, TK, TI); + T1r = FNMS(TJ, TH, T1q); + } + { + E TO, TR, TP, T1t, TN, TQ; + TO = ri[WS(rs, 6)]; + TR = ii[WS(rs, 6)]; + TN = W[10]; + TP = TN * TO; + T1t = TN * TR; + TQ = W[11]; + TS = FMA(TQ, TR, TP); + T1u = FNMS(TQ, TO, T1t); + } + TM = TF - TL; + TZ = TS - TY; + T10 = TM + TZ; + T1F = T1p + T1r; + T1G = T1u + T1w; + T1P = T1F + T1G; + T16 = TF + TL; + T17 = TS + TY; + T18 = T16 + T17; + T1s = T1p - T1r; + T1x = T1u - T1w; + T25 = T1s + T1x; + } + { + E Te, T1e, Tx, T1l, Tk, T1g, Tr, T1j; + { + E Ta, Td, Tb, T1d, T9, Tc; + Ta = ri[WS(rs, 2)]; + Td = ii[WS(rs, 2)]; + T9 = W[2]; + Tb = T9 * Ta; + T1d = T9 * Td; + Tc = W[3]; + Te = FMA(Tc, Td, Tb); + T1e = FNMS(Tc, Ta, T1d); + } + { + E Tt, Tw, Tu, T1k, Ts, Tv; + Tt = ri[WS(rs, 3)]; + Tw = ii[WS(rs, 3)]; + Ts = W[4]; + Tu = Ts * Tt; + T1k = Ts * Tw; + Tv = W[5]; + Tx = FMA(Tv, Tw, Tu); + T1l = FNMS(Tv, Tt, T1k); + } + { + E Tg, Tj, Th, T1f, Tf, Ti; + Tg = ri[WS(rs, 7)]; + Tj = ii[WS(rs, 7)]; + Tf = W[12]; + Th = Tf * Tg; + T1f = Tf * Tj; + Ti = W[13]; + Tk = FMA(Ti, Tj, Th); + T1g = FNMS(Ti, Tg, T1f); + } + { + E Tn, Tq, To, T1i, Tm, Tp; + Tn = ri[WS(rs, 8)]; + Tq = ii[WS(rs, 8)]; + Tm = W[14]; + To = Tm * Tn; + T1i = Tm * Tq; + Tp = W[15]; + Tr = FMA(Tp, Tq, To); + T1j = FNMS(Tp, Tn, T1i); + } + Tl = Te - Tk; + Ty = Tr - Tx; + Tz = Tl + Ty; + T1I = T1e + T1g; + T1J = T1j + T1l; + T1O = T1I + T1J; + T13 = Te + Tk; + T14 = Tr + Tx; + T15 = T13 + T14; + T1h = T1e - T1g; + T1m = T1j - T1l; + T24 = T1h + T1m; + } + { + E T1b, T11, T1a, T1z, T1B, T1n, T1y, T1A, T1c; + T1b = Tz - T10; + T11 = Tz + T10; + T1a = FNMS(KP250000000, T11, T8); + T1n = T1h - T1m; + T1y = T1s - T1x; + T1z = FMA(KP618033988, T1y, T1n); + T1B = FNMS(KP618033988, T1n, T1y); + ri[WS(rs, 5)] = T8 + T11; + T1A = FNMS(KP559016994, T1b, T1a); + ri[WS(rs, 7)] = FNMS(KP951056516, T1B, T1A); + ri[WS(rs, 3)] = FMA(KP951056516, T1B, T1A); + T1c = FMA(KP559016994, T1b, T1a); + ri[WS(rs, 9)] = FNMS(KP951056516, T1z, T1c); + ri[WS(rs, 1)] = FMA(KP951056516, T1z, T1c); + } + { + E T28, T26, T27, T2c, T2e, T2a, T2b, T2d, T29; + T28 = T24 - T25; + T26 = T24 + T25; + T27 = FNMS(KP250000000, T26, T23); + T2a = Tl - Ty; + T2b = TM - TZ; + T2c = FMA(KP618033988, T2b, T2a); + T2e = FNMS(KP618033988, T2a, T2b); + ii[WS(rs, 5)] = T26 + T23; + T2d = FNMS(KP559016994, T28, T27); + ii[WS(rs, 3)] = FNMS(KP951056516, T2e, T2d); + ii[WS(rs, 7)] = FMA(KP951056516, T2e, T2d); + T29 = FMA(KP559016994, T28, T27); + ii[WS(rs, 1)] = FNMS(KP951056516, T2c, T29); + ii[WS(rs, 9)] = FMA(KP951056516, T2c, T29); + } + { + E T1D, T19, T1C, T1L, T1N, T1H, T1K, T1M, T1E; + T1D = T15 - T18; + T19 = T15 + T18; + T1C = FNMS(KP250000000, T19, T12); + T1H = T1F - T1G; + T1K = T1I - T1J; + T1L = FNMS(KP618033988, T1K, T1H); + T1N = FMA(KP618033988, T1H, T1K); + ri[0] = T12 + T19; + T1M = FMA(KP559016994, T1D, T1C); + ri[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M); + ri[WS(rs, 6)] = FMA(KP951056516, T1N, T1M); + T1E = FNMS(KP559016994, T1D, T1C); + ri[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E); + ri[WS(rs, 8)] = FMA(KP951056516, T1L, T1E); + } + { + E T1W, T1Q, T1V, T20, T22, T1Y, T1Z, T21, T1X; + T1W = T1O - T1P; + T1Q = T1O + T1P; + T1V = FNMS(KP250000000, T1Q, T1U); + T1Y = T16 - T17; + T1Z = T13 - T14; + T20 = FNMS(KP618033988, T1Z, T1Y); + T22 = FMA(KP618033988, T1Y, T1Z); + ii[0] = T1Q + T1U; + T21 = FMA(KP559016994, T1W, T1V); + ii[WS(rs, 4)] = FMA(KP951056516, T22, T21); + ii[WS(rs, 6)] = FNMS(KP951056516, T22, T21); + T1X = FNMS(KP559016994, T1W, T1V); + ii[WS(rs, 2)] = FMA(KP951056516, T20, T1X); + ii[WS(rs, 8)] = FNMS(KP951056516, T20, T1X); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 10}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {48, 18, 54, 0}, 0, 0, 0 }; + +void X(codelet_t1_10) (planner *p) { + X(kdft_dit_register) (p, t1_10, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */ + +/* + * This function contains 102 FP additions, 60 FP multiplications, + * (or, 72 additions, 30 multiplications, 30 fused multiply/add), + * 45 stack variables, 4 constants, and 40 memory accesses + */ +#include "dft/scalar/t.h" + +static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { + E T7, T1O, TT, T1C, TF, TQ, TR, T1o, T1p, T1y, TX, TY, TZ, T1d, T1g; + E T1M, Ti, Tt, Tu, T1r, T1s, T1x, TU, TV, TW, T16, T19, T1L; + { + E T1, T1B, T6, T1A; + T1 = ri[0]; + T1B = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 5)]; + T5 = ii[WS(rs, 5)]; + T2 = W[8]; + T4 = W[9]; + T6 = FMA(T2, T3, T4 * T5); + T1A = FNMS(T4, T3, T2 * T5); + } + T7 = T1 - T6; + T1O = T1B - T1A; + TT = T1 + T6; + T1C = T1A + T1B; + } + { + E Tz, T1b, TP, T1f, TE, T1c, TK, T1e; + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(rs, 4)]; + Ty = ii[WS(rs, 4)]; + Tv = W[6]; + Tx = W[7]; + Tz = FMA(Tv, Tw, Tx * Ty); + T1b = FNMS(Tx, Tw, Tv * Ty); + } + { + E TM, TO, TL, TN; + TM = ri[WS(rs, 1)]; + TO = ii[WS(rs, 1)]; + TL = W[0]; + TN = W[1]; + TP = FMA(TL, TM, TN * TO); + T1f = FNMS(TN, TM, TL * TO); + } + { + E TB, TD, TA, TC; + TB = ri[WS(rs, 9)]; + TD = ii[WS(rs, 9)]; + TA = W[16]; + TC = W[17]; + TE = FMA(TA, TB, TC * TD); + T1c = FNMS(TC, TB, TA * TD); + } + { + E TH, TJ, TG, TI; + TH = ri[WS(rs, 6)]; + TJ = ii[WS(rs, 6)]; + TG = W[10]; + TI = W[11]; + TK = FMA(TG, TH, TI * TJ); + T1e = FNMS(TI, TH, TG * TJ); + } + TF = Tz - TE; + TQ = TK - TP; + TR = TF + TQ; + T1o = T1b + T1c; + T1p = T1e + T1f; + T1y = T1o + T1p; + TX = Tz + TE; + TY = TK + TP; + TZ = TX + TY; + T1d = T1b - T1c; + T1g = T1e - T1f; + T1M = T1d + T1g; + } + { + E Tc, T14, Ts, T18, Th, T15, Tn, T17; + { + E T9, Tb, T8, Ta; + T9 = ri[WS(rs, 2)]; + Tb = ii[WS(rs, 2)]; + T8 = W[2]; + Ta = W[3]; + Tc = FMA(T8, T9, Ta * Tb); + T14 = FNMS(Ta, T9, T8 * Tb); + } + { + E Tp, Tr, To, Tq; + Tp = ri[WS(rs, 3)]; + Tr = ii[WS(rs, 3)]; + To = W[4]; + Tq = W[5]; + Ts = FMA(To, Tp, Tq * Tr); + T18 = FNMS(Tq, Tp, To * Tr); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 7)]; + Tg = ii[WS(rs, 7)]; + Td = W[12]; + Tf = W[13]; + Th = FMA(Td, Te, Tf * Tg); + T15 = FNMS(Tf, Te, Td * Tg); + } + { + E Tk, Tm, Tj, Tl; + Tk = ri[WS(rs, 8)]; + Tm = ii[WS(rs, 8)]; + Tj = W[14]; + Tl = W[15]; + Tn = FMA(Tj, Tk, Tl * Tm); + T17 = FNMS(Tl, Tk, Tj * Tm); + } + Ti = Tc - Th; + Tt = Tn - Ts; + Tu = Ti + Tt; + T1r = T14 + T15; + T1s = T17 + T18; + T1x = T1r + T1s; + TU = Tc + Th; + TV = Tn + Ts; + TW = TU + TV; + T16 = T14 - T15; + T19 = T17 - T18; + T1L = T16 + T19; + } + { + E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13; + T11 = KP559016994 * (Tu - TR); + TS = Tu + TR; + T12 = FNMS(KP250000000, TS, T7); + T1a = T16 - T19; + T1h = T1d - T1g; + T1i = FMA(KP951056516, T1a, KP587785252 * T1h); + T1k = FNMS(KP587785252, T1a, KP951056516 * T1h); + ri[WS(rs, 5)] = T7 + TS; + T1j = T12 - T11; + ri[WS(rs, 7)] = T1j - T1k; + ri[WS(rs, 3)] = T1j + T1k; + T13 = T11 + T12; + ri[WS(rs, 9)] = T13 - T1i; + ri[WS(rs, 1)] = T13 + T1i; + } + { + E T1N, T1P, T1Q, T1U, T1W, T1S, T1T, T1V, T1R; + T1N = KP559016994 * (T1L - T1M); + T1P = T1L + T1M; + T1Q = FNMS(KP250000000, T1P, T1O); + T1S = Ti - Tt; + T1T = TF - TQ; + T1U = FMA(KP951056516, T1S, KP587785252 * T1T); + T1W = FNMS(KP587785252, T1S, KP951056516 * T1T); + ii[WS(rs, 5)] = T1P + T1O; + T1V = T1Q - T1N; + ii[WS(rs, 3)] = T1V - T1W; + ii[WS(rs, 7)] = T1W + T1V; + T1R = T1N + T1Q; + ii[WS(rs, 1)] = T1R - T1U; + ii[WS(rs, 9)] = T1U + T1R; + } + { + E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n; + T1m = KP559016994 * (TW - TZ); + T10 = TW + TZ; + T1l = FNMS(KP250000000, T10, TT); + T1q = T1o - T1p; + T1t = T1r - T1s; + T1u = FNMS(KP587785252, T1t, KP951056516 * T1q); + T1w = FMA(KP951056516, T1t, KP587785252 * T1q); + ri[0] = TT + T10; + T1v = T1m + T1l; + ri[WS(rs, 4)] = T1v - T1w; + ri[WS(rs, 6)] = T1v + T1w; + T1n = T1l - T1m; + ri[WS(rs, 2)] = T1n - T1u; + ri[WS(rs, 8)] = T1n + T1u; + } + { + E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; + T1H = KP559016994 * (T1x - T1y); + T1z = T1x + T1y; + T1G = FNMS(KP250000000, T1z, T1C); + T1D = TX - TY; + T1E = TU - TV; + T1F = FNMS(KP587785252, T1E, KP951056516 * T1D); + T1J = FMA(KP951056516, T1E, KP587785252 * T1D); + ii[0] = T1z + T1C; + T1K = T1H + T1G; + ii[WS(rs, 4)] = T1J + T1K; + ii[WS(rs, 6)] = T1K - T1J; + T1I = T1G - T1H; + ii[WS(rs, 2)] = T1F + T1I; + ii[WS(rs, 8)] = T1I - T1F; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 10}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {72, 30, 30, 0}, 0, 0, 0 }; + +void X(codelet_t1_10) (planner *p) { + X(kdft_dit_register) (p, t1_10, &desc); +} +#endif