Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_4.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_4.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,146 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:29 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */ + +/* + * This function contains 15 FP additions, 16 FP multiplications, + * (or, 9 additions, 10 multiplications, 6 fused multiply/add), + * 21 stack variables, 1 constants, and 8 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th; + V Tf, Te, Ti, Tj; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tb = LDW(&(W[0])); + T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T4 = LDW(&(W[TWVL * 2])); + T9 = LDW(&(W[TWVL * 4])); + T3 = VFMACONJ(T2, T1); + Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); + T7 = VZMULJ(T4, VFMACONJ(T6, T5)); + Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); + Tg = VADD(T3, T7); + T8 = VSUB(T3, T7); + Td = VSUB(Ta, Tc); + Th = VADD(Tc, Ta); + Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8))); + Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8)); + Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th)); + Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg))); + ST(&(Rm[0]), Tf, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)])); + ST(&(Rp[0]), Ti, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} }; + +void XSIMD(codelet_hc2cfdftv_4) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */ + +/* + * This function contains 15 FP additions, 10 FP multiplications, + * (or, 15 additions, 10 multiplications, 0 fused multiply/add), + * 23 stack variables, 1 constants, and 8 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th; + V Ta, Tf, Tk, Tl, Ti, Tj; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + T3 = VCONJ(T2); + T4 = VADD(T1, T3); + Tb = LDW(&(W[0])); + Tc = VZMULIJ(Tb, VSUB(T3, T1)); + T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T8 = VCONJ(T7); + T5 = LDW(&(W[TWVL * 2])); + T9 = VZMULJ(T5, VADD(T6, T8)); + Td = LDW(&(W[TWVL * 4])); + Te = VZMULIJ(Td, VSUB(T8, T6)); + Ta = VSUB(T4, T9); + Tf = VBYI(VSUB(Tc, Te)); + Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf)); + Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf))); + ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[0]), Th, -ms, &(Rm[0])); + Ti = VADD(T4, T9); + Tj = VADD(Tc, Te); + Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj))); + Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj)); + ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[0]), Tl, ms, &(Rp[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} }; + +void XSIMD(codelet_hc2cfdftv_4) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */