diff src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_10.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_10.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,297 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:42:29 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
+
+/*
+ * This function contains 61 FP additions, 60 FP multiplications,
+ * (or, 33 additions, 32 multiplications, 28 fused multiply/add),
+ * 77 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
+	       V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1;
+	       V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ;
+	       V TT, Tz, T7, TR, To, Tu, TU;
+	       T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Tv = LDW(&(W[0]));
+	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       Tq = LDW(&(W[TWVL * 6]));
+	       Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       T9 = LDW(&(W[TWVL * 2]));
+	       Ti = LDW(&(W[TWVL * 4]));
+	       Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
+	       Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
+	       Td = LDW(&(W[TWVL * 12]));
+	       Tx = LDW(&(W[TWVL * 10]));
+	       Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
+	       Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
+	       Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+	       Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+	       Tk = LDW(&(W[TWVL * 14]));
+	       Ts = LDW(&(W[TWVL * 16]));
+	       Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
+	       Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
+	       T3 = VFMACONJ(T2, T1);
+	       T4 = LDW(&(W[TWVL * 8]));
+	       Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
+	       Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
+	       Th = VSUB(Tc, Tg);
+	       TQ = VADD(Tc, Tg);
+	       TT = VADD(Tw, Ty);
+	       Tz = VSUB(Tw, Ty);
+	       T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
+	       TR = VADD(Tj, Tn);
+	       To = VSUB(Tj, Tn);
+	       Tu = VSUB(Tr, Tt);
+	       TU = VADD(Tr, Tt);
+	       {
+		    V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ;
+		    V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ;
+		    V T18, T19, T15, T14;
+		    TP = VADD(T3, T7);
+		    T8 = VSUB(T3, T7);
+		    TS = VADD(TQ, TR);
+		    T11 = VSUB(TQ, TR);
+		    Tp = VSUB(Th, To);
+		    TH = VADD(Th, To);
+		    TA = VSUB(Tu, Tz);
+		    TG = VADD(Tz, Tu);
+		    TV = VADD(TT, TU);
+		    T12 = VSUB(TU, TT);
+		    TE = VSUB(Tp, TA);
+		    TB = VADD(Tp, TA);
+		    TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
+		    TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
+		    TZ = VSUB(TS, TV);
+		    TW = VADD(TS, TV);
+		    T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
+		    T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
+		    TD = VFNMS(LDK(KP250000000), TB, T8);
+		    TC = VMUL(LDK(KP500000000), VADD(T8, TB));
+		    TY = VFNMS(LDK(KP250000000), TW, TP);
+		    TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
+		    TL = VFMA(LDK(KP559016994), TE, TD);
+		    TF = VFNMS(LDK(KP559016994), TE, TD);
+		    ST(&(Rp[0]), TC, ms, &(Rp[0]));
+		    T10 = VFMA(LDK(KP559016994), TZ, TY);
+		    T16 = VFNMS(LDK(KP559016994), TZ, TY);
+		    ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
+		    TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
+		    TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
+		    TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
+		    TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
+		    T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
+		    T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
+		    T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
+		    T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
+		    ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
+		    ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
+		    ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
+		    ST(&(Rm[0]), T15, -ms, &(Rm[0]));
+		    ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} };
+
+void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
+
+/*
+ * This function contains 61 FP additions, 38 FP multiplications,
+ * (or, 55 additions, 32 multiplications, 6 fused multiply/add),
+ * 82 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
+     DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
+     DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
+     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
+	       V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
+	       V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
+	       V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
+	       {
+		    V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
+		    V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
+		    V TC, T4, T9, T5;
+		    T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+		    T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+		    T3 = VCONJ(T2);
+		    Tx = LDW(&(W[0]));
+		    Ty = VZMULIJ(Tx, VSUB(T3, T1));
+		    T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+		    T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+		    T7 = VCONJ(T6);
+		    TA = LDW(&(W[TWVL * 6]));
+		    TB = VZMULJ(TA, VADD(T7, T8));
+		    Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+		    Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+		    Te = VCONJ(Td);
+		    Tb = LDW(&(W[TWVL * 2]));
+		    Tf = VZMULJ(Tb, VADD(Tc, Te));
+		    Tr = LDW(&(W[TWVL * 4]));
+		    Ts = VZMULIJ(Tr, VSUB(Te, Tc));
+		    Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+		    Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+		    Ti = VCONJ(Th);
+		    Tg = LDW(&(W[TWVL * 12]));
+		    Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
+		    Tv = LDW(&(W[TWVL * 10]));
+		    Tw = VZMULJ(Tv, VADD(Ti, Tj));
+		    Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+		    To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+		    Tp = VCONJ(To);
+		    Tm = LDW(&(W[TWVL * 14]));
+		    Tq = VZMULJ(Tm, VADD(Tn, Tp));
+		    TC = LDW(&(W[TWVL * 16]));
+		    TD = VZMULIJ(TC, VSUB(Tp, Tn));
+		    Tl = VSUB(Tf, Tk);
+		    Tt = VSUB(Tq, Ts);
+		    Tu = VADD(Tl, Tt);
+		    TY = VADD(Ty, Tw);
+		    TZ = VADD(TB, TD);
+		    T10 = VADD(TY, TZ);
+		    Tz = VSUB(Tw, Ty);
+		    TE = VSUB(TB, TD);
+		    TF = VADD(Tz, TE);
+		    TV = VADD(Tf, Tk);
+		    TW = VADD(Ts, Tq);
+		    TX = VADD(TV, TW);
+		    T4 = VADD(T1, T3);
+		    T5 = LDW(&(W[TWVL * 8]));
+		    T9 = VZMULIJ(T5, VSUB(T7, T8));
+		    Ta = VSUB(T4, T9);
+		    TU = VADD(T4, T9);
+	       }
+	       TL = VSUB(Tl, Tt);
+	       TM = VSUB(TE, Tz);
+	       TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
+	       TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
+	       TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
+	       TG = VADD(Tu, TF);
+	       TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
+	       TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
+	       TQ = VSUB(TJ, TI);
+	       TK = VADD(TI, TJ);
+	       ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
+	       TT = VCONJ(VADD(TQ, TR));
+	       ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
+	       TO = VSUB(TK, TN);
+	       ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
+	       TP = VCONJ(VADD(TK, TN));
+	       ST(&(Rm[0]), TP, -ms, &(Rm[0]));
+	       TS = VSUB(TQ, TR);
+	       ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
+	       T16 = VSUB(TZ, TY);
+	       T17 = VSUB(TV, TW);
+	       T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
+	       T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
+	       T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
+	       T11 = VADD(TX, T10);
+	       T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
+	       T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
+	       T1b = VADD(T14, T13);
+	       T15 = VSUB(T13, T14);
+	       ST(&(Rp[0]), T12, ms, &(Rp[0]));
+	       T1e = VADD(T1b, T1c);
+	       ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
+	       T19 = VCONJ(VSUB(T15, T18));
+	       ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
+	       T1a = VADD(T15, T18);
+	       ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
+	       T1d = VCONJ(VSUB(T1b, T1c));
+	       ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} };
+
+void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */