Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_16.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_16.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,428 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:30 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */ + +/* + * This function contains 103 FP additions, 80 FP multiplications, + * (or, 53 additions, 30 multiplications, 50 fused multiply/add), + * 123 stack variables, 3 constants, and 32 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP414213562, +0.414213562373095048801688724209698078569671875); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { + V T1D, T1F, TV, TW, T17, T18, T1B, T1A, T1H, T1G; + { + V T8, Tv, Tb, TF, Tl, TJ, TP, T1w, TE, T1t, T10, T1p, TG, Te, Tg; + V Th, T2, T3, Ts, Tt, T5, T6, Tp, Tq, T9, TA, T4, TC, Tu, TN; + V T7, TB, Tr, Ta, Tj, Tk, Tc, Td, TY, TD, TO, TZ, T1Q, T19, T1I; + V T1d, Tf, T11, TH, TQ, Ti, TI, T1k, T1K, T1S, T1r, T14, T16, TU, Ty; + V T1z, TX, T1o, T1, TK, TR, Tm, T12, T1C, Tz, T15; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); + Ts = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); + Tt = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T5 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + T6 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Tp = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + Tq = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); + T9 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + TA = VFNMSCONJ(T3, T2); + T4 = VFMACONJ(T3, T2); + TC = VFMSCONJ(Tt, Ts); + Tu = VFMACONJ(Tt, Ts); + TN = VFNMSCONJ(T6, T5); + T7 = VFMACONJ(T6, T5); + TB = VFNMSCONJ(Tq, Tp); + Tr = VFMACONJ(Tq, Tp); + Ta = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); + Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Tk = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + Tc = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); + Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T8 = VSUB(T4, T7); + TY = VADD(T4, T7); + TD = VADD(TB, TC); + TO = VSUB(TB, TC); + Tv = VSUB(Tr, Tu); + TZ = VADD(Tr, Tu); + Tb = VFMACONJ(Ta, T9); + TF = VFNMSCONJ(Ta, T9); + Tl = VFMACONJ(Tk, Tj); + TJ = VFNMSCONJ(Tk, Tj); + TP = VFMA(LDK(KP707106781), TO, TN); + T1w = VFNMS(LDK(KP707106781), TO, TN); + TE = VFMA(LDK(KP707106781), TD, TA); + T1t = VFNMS(LDK(KP707106781), TD, TA); + T10 = VADD(TY, TZ); + T1p = VSUB(TY, TZ); + TG = VFNMSCONJ(Td, Tc); + Te = VFMACONJ(Td, Tc); + Tg = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); + Th = LD(&(Rm[0]), -ms, &(Rm[0])); + T1Q = LDW(&(W[TWVL * 22])); + T19 = LDW(&(W[TWVL * 26])); + T1I = LDW(&(W[TWVL * 2])); + T1d = LDW(&(W[TWVL * 28])); + Tf = VSUB(Tb, Te); + T11 = VADD(Tb, Te); + TH = VFNMS(LDK(KP414213562), TG, TF); + TQ = VFMA(LDK(KP414213562), TF, TG); + Ti = VFMACONJ(Th, Tg); + TI = VFMSCONJ(Th, Tg); + T1k = LDW(&(W[0])); + T1K = LDW(&(W[TWVL * 4])); + T1S = LDW(&(W[TWVL * 24])); + TX = LDW(&(W[TWVL * 14])); + T1o = LDW(&(W[TWVL * 6])); + T1 = LDW(&(W[TWVL * 10])); + TK = VFMA(LDK(KP414213562), TJ, TI); + TR = VFNMS(LDK(KP414213562), TI, TJ); + Tm = VSUB(Ti, Tl); + T12 = VADD(Ti, Tl); + T1C = LDW(&(W[TWVL * 18])); + Tz = LDW(&(W[TWVL * 12])); + T15 = LDW(&(W[TWVL * 16])); + { + V T1v, T1y, T1N, T1g, T1J, T1c, T1U, T1V, T1m, T1n, T1s, TS, T1u, TL, T1x; + V T13, T1q, Tn, Tw, T1L, T1f, TT, T1M, T1e, TM, T1R, T1j, T1b, Tx, T1a; + V To, T1T, T1l, T1E, T1O, T1P, T1h, T1i; + T1s = LDW(&(W[TWVL * 8])); + TS = VADD(TQ, TR); + T1u = VSUB(TQ, TR); + TL = VADD(TH, TK); + T1x = VSUB(TH, TK); + T13 = VADD(T11, T12); + T1q = VSUB(T11, T12); + Tn = VADD(Tf, Tm); + Tw = VSUB(Tf, Tm); + T1L = VFMA(LDK(KP923879532), T1u, T1t); + T1v = VFNMS(LDK(KP923879532), T1u, T1t); + T1f = VFMA(LDK(KP923879532), TS, TP); + TT = VFNMS(LDK(KP923879532), TS, TP); + T1M = VFNMS(LDK(KP923879532), T1x, T1w); + T1y = VFMA(LDK(KP923879532), T1x, T1w); + T1e = VFMA(LDK(KP923879532), TL, TE); + TM = VFNMS(LDK(KP923879532), TL, TE); + T1r = VZMUL(T1o, VFMAI(T1q, T1p)); + T1R = VZMUL(T1Q, VFNMSI(T1q, T1p)); + T14 = VZMUL(TX, VSUB(T10, T13)); + T1j = VADD(T10, T13); + T1b = VFMA(LDK(KP707106781), Tw, Tv); + Tx = VFNMS(LDK(KP707106781), Tw, Tv); + T1a = VFMA(LDK(KP707106781), Tn, T8); + To = VFNMS(LDK(KP707106781), Tn, T8); + T1T = VZMULI(T1S, VFMAI(T1M, T1L)); + T1N = VZMULI(T1K, VFNMSI(T1M, T1L)); + T16 = VZMULI(T15, VFMAI(TT, TM)); + TU = VZMULI(Tz, VFNMSI(TT, TM)); + T1l = VZMULI(T1k, VFMAI(T1f, T1e)); + T1g = VZMULI(T1d, VFNMSI(T1f, T1e)); + T1D = VZMUL(T1C, VFMAI(Tx, To)); + Ty = VZMUL(T1, VFNMSI(Tx, To)); + T1J = VZMUL(T1I, VFMAI(T1b, T1a)); + T1c = VZMUL(T19, VFNMSI(T1b, T1a)); + T1U = VCONJ(VSUB(T1R, T1T)); + T1V = VADD(T1R, T1T); + T1m = VCONJ(VSUB(T1j, T1l)); + T1n = VADD(T1j, T1l); + T1z = VZMULI(T1s, VFMAI(T1y, T1v)); + T1E = LDW(&(W[TWVL * 20])); + T1O = VCONJ(VSUB(T1J, T1N)); + T1P = VADD(T1J, T1N); + T1h = VCONJ(VSUB(T1c, T1g)); + T1i = VADD(T1c, T1g); + ST(&(Rp[WS(rs, 6)]), T1V, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 6)]), T1U, -ms, &(Rm[0])); + ST(&(Rp[0]), T1n, ms, &(Rp[0])); + ST(&(Rm[0]), T1m, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 1)]), T1P, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 1)]), T1O, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 7)]), T1i, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 7)]), T1h, -ms, &(Rm[WS(rs, 1)])); + T1F = VZMULI(T1E, VFNMSI(T1y, T1v)); + } + TV = VCONJ(VSUB(Ty, TU)); + TW = VADD(Ty, TU); + T17 = VCONJ(VSUB(T14, T16)); + T18 = VADD(T14, T16); + T1B = VADD(T1r, T1z); + T1A = VCONJ(VSUB(T1r, T1z)); + } + T1H = VADD(T1D, T1F); + T1G = VCONJ(VSUB(T1D, T1F)); + ST(&(Rm[WS(rs, 3)]), TV, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 3)]), TW, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 4)]), T17, -ms, &(Rm[0])); + ST(&(Rm[WS(rs, 2)]), T1A, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 2)]), T1B, ms, &(Rp[0])); + ST(&(Rp[WS(rs, 4)]), T18, ms, &(Rp[0])); + ST(&(Rp[WS(rs, 5)]), T1H, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 5)]), T1G, -ms, &(Rm[WS(rs, 1)])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + VTW(1, 10), + VTW(1, 11), + VTW(1, 12), + VTW(1, 13), + VTW(1, 14), + VTW(1, 15), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {53, 30, 50, 0} }; + +void XSIMD(codelet_hc2cbdftv_16) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 16 -dif -sign 1 -name hc2cbdftv_16 -include hc2cbv.h */ + +/* + * This function contains 103 FP additions, 42 FP multiplications, + * (or, 99 additions, 38 multiplications, 4 fused multiply/add), + * 83 stack variables, 3 constants, and 32 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP382683432, +0.382683432365089771728459984030398866761344562); + DVK(KP923879532, +0.923879532511286756128183189396788286822416626); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 30)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(64, rs)) { + V Tf, T16, TZ, T1C, TI, T1a, TV, T1D, T1F, T1G, Ty, T19, TC, T17, TS; + V T10; + { + V T2, TD, T4, TF, Tc, Tb, Td, T6, T8, T9, T3, TE, Ta, T7, T5; + V Te, TX, TY, TG, TH, TT, TU, Tj, TM, Tw, TQ, Tn, TN, Ts, TP; + V Tg, Ti, Th, Tt, Tv, Tu, Tk, Tm, Tl, Tr, Tq, Tp, To, Tx, TA; + V TB, TO, TR; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + TD = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 7)]), -ms, &(Rm[WS(rs, 1)])); + T4 = VCONJ(T3); + TE = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + TF = VCONJ(TE); + Tc = LD(&(Rp[WS(rs, 6)]), ms, &(Rp[0])); + Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Tb = VCONJ(Ta); + Td = VSUB(Tb, Tc); + T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)])); + T8 = VCONJ(T7); + T9 = VSUB(T6, T8); + T5 = VSUB(T2, T4); + Te = VMUL(LDK(KP707106781), VADD(T9, Td)); + Tf = VADD(T5, Te); + T16 = VSUB(T5, Te); + TX = VADD(T2, T4); + TY = VADD(TD, TF); + TZ = VSUB(TX, TY); + T1C = VADD(TX, TY); + TG = VSUB(TD, TF); + TH = VMUL(LDK(KP707106781), VSUB(T9, Td)); + TI = VADD(TG, TH); + T1a = VSUB(TH, TG); + TT = VADD(T6, T8); + TU = VADD(Tb, Tc); + TV = VSUB(TT, TU); + T1D = VADD(TT, TU); + Tg = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Th = LD(&(Rm[WS(rs, 6)]), -ms, &(Rm[0])); + Ti = VCONJ(Th); + Tj = VSUB(Tg, Ti); + TM = VADD(Tg, Ti); + Tt = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Tu = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0])); + Tv = VCONJ(Tu); + Tw = VSUB(Tt, Tv); + TQ = VADD(Tt, Tv); + Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)])); + Tl = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + Tm = VCONJ(Tl); + Tn = VSUB(Tk, Tm); + TN = VADD(Tk, Tm); + Tr = LD(&(Rp[WS(rs, 7)]), ms, &(Rp[WS(rs, 1)])); + Tp = LD(&(Rm[0]), -ms, &(Rm[0])); + Tq = VCONJ(Tp); + Ts = VSUB(Tq, Tr); + TP = VADD(Tq, Tr); + T1F = VADD(TM, TN); + T1G = VADD(TP, TQ); + To = VFNMS(LDK(KP382683432), Tn, VMUL(LDK(KP923879532), Tj)); + Tx = VFMA(LDK(KP923879532), Ts, VMUL(LDK(KP382683432), Tw)); + Ty = VADD(To, Tx); + T19 = VSUB(To, Tx); + TA = VFMA(LDK(KP382683432), Tj, VMUL(LDK(KP923879532), Tn)); + TB = VFNMS(LDK(KP382683432), Ts, VMUL(LDK(KP923879532), Tw)); + TC = VADD(TA, TB); + T17 = VSUB(TA, TB); + TO = VSUB(TM, TN); + TR = VSUB(TP, TQ); + TS = VMUL(LDK(KP707106781), VSUB(TO, TR)); + T10 = VMUL(LDK(KP707106781), VADD(TO, TR)); + } + { + V T21, T1W, T1u, T20, T1I, T1O, TK, T1S, T12, T1e, T1k, T1A, T1o, T1w, T1c; + V T1M, T1U, T1V, T1T, T1s, T1t, T1r, T1Z, T1E, T1H, T1B, T1N, Tz, TJ, T1; + V T1R, TW, T11, TL, T1d, T1i, T1j, T1h, T1z, T1m, T1n, T1l, T1v, T18, T1b; + V T15, T1L, T13, T1g, T1X, T23, T14, T1f, T1Y, T22, T1p, T1y, T1J, T1Q, T1q; + V T1x, T1K, T1P; + T1U = VADD(T1C, T1D); + T1V = VADD(T1F, T1G); + T21 = VADD(T1U, T1V); + T1T = LDW(&(W[TWVL * 14])); + T1W = VZMUL(T1T, VSUB(T1U, T1V)); + T1s = VADD(Tf, Ty); + T1t = VBYI(VADD(TI, TC)); + T1r = LDW(&(W[TWVL * 28])); + T1u = VZMULI(T1r, VSUB(T1s, T1t)); + T1Z = LDW(&(W[0])); + T20 = VZMULI(T1Z, VADD(T1s, T1t)); + T1E = VSUB(T1C, T1D); + T1H = VBYI(VSUB(T1F, T1G)); + T1B = LDW(&(W[TWVL * 22])); + T1I = VZMUL(T1B, VSUB(T1E, T1H)); + T1N = LDW(&(W[TWVL * 6])); + T1O = VZMUL(T1N, VADD(T1E, T1H)); + Tz = VSUB(Tf, Ty); + TJ = VBYI(VSUB(TC, TI)); + T1 = LDW(&(W[TWVL * 12])); + TK = VZMULI(T1, VADD(Tz, TJ)); + T1R = LDW(&(W[TWVL * 16])); + T1S = VZMULI(T1R, VSUB(Tz, TJ)); + TW = VBYI(VSUB(TS, TV)); + T11 = VSUB(TZ, T10); + TL = LDW(&(W[TWVL * 10])); + T12 = VZMUL(TL, VADD(TW, T11)); + T1d = LDW(&(W[TWVL * 18])); + T1e = VZMUL(T1d, VSUB(T11, TW)); + T1i = VBYI(VADD(T1a, T19)); + T1j = VADD(T16, T17); + T1h = LDW(&(W[TWVL * 4])); + T1k = VZMULI(T1h, VADD(T1i, T1j)); + T1z = LDW(&(W[TWVL * 24])); + T1A = VZMULI(T1z, VSUB(T1j, T1i)); + T1m = VBYI(VADD(TV, TS)); + T1n = VADD(TZ, T10); + T1l = LDW(&(W[TWVL * 2])); + T1o = VZMUL(T1l, VADD(T1m, T1n)); + T1v = LDW(&(W[TWVL * 26])); + T1w = VZMUL(T1v, VSUB(T1n, T1m)); + T18 = VSUB(T16, T17); + T1b = VBYI(VSUB(T19, T1a)); + T15 = LDW(&(W[TWVL * 20])); + T1c = VZMULI(T15, VSUB(T18, T1b)); + T1L = LDW(&(W[TWVL * 8])); + T1M = VZMULI(T1L, VADD(T1b, T18)); + T13 = VADD(TK, T12); + ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)])); + T1g = VCONJ(VSUB(T1e, T1c)); + ST(&(Rm[WS(rs, 5)]), T1g, -ms, &(Rm[WS(rs, 1)])); + T1X = VADD(T1S, T1W); + ST(&(Rp[WS(rs, 4)]), T1X, ms, &(Rp[0])); + T23 = VCONJ(VSUB(T21, T20)); + ST(&(Rm[0]), T23, -ms, &(Rm[0])); + T14 = VCONJ(VSUB(T12, TK)); + ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)])); + T1f = VADD(T1c, T1e); + ST(&(Rp[WS(rs, 5)]), T1f, ms, &(Rp[WS(rs, 1)])); + T1Y = VCONJ(VSUB(T1W, T1S)); + ST(&(Rm[WS(rs, 4)]), T1Y, -ms, &(Rm[0])); + T22 = VADD(T20, T21); + ST(&(Rp[0]), T22, ms, &(Rp[0])); + T1p = VADD(T1k, T1o); + ST(&(Rp[WS(rs, 1)]), T1p, ms, &(Rp[WS(rs, 1)])); + T1y = VCONJ(VSUB(T1w, T1u)); + ST(&(Rm[WS(rs, 7)]), T1y, -ms, &(Rm[WS(rs, 1)])); + T1J = VADD(T1A, T1I); + ST(&(Rp[WS(rs, 6)]), T1J, ms, &(Rp[0])); + T1Q = VCONJ(VSUB(T1O, T1M)); + ST(&(Rm[WS(rs, 2)]), T1Q, -ms, &(Rm[0])); + T1q = VCONJ(VSUB(T1o, T1k)); + ST(&(Rm[WS(rs, 1)]), T1q, -ms, &(Rm[WS(rs, 1)])); + T1x = VADD(T1u, T1w); + ST(&(Rp[WS(rs, 7)]), T1x, ms, &(Rp[WS(rs, 1)])); + T1K = VCONJ(VSUB(T1I, T1A)); + ST(&(Rm[WS(rs, 6)]), T1K, -ms, &(Rm[0])); + T1P = VADD(T1M, T1O); + ST(&(Rp[WS(rs, 2)]), T1P, ms, &(Rp[0])); + } + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + VTW(1, 8), + VTW(1, 9), + VTW(1, 10), + VTW(1, 11), + VTW(1, 12), + VTW(1, 13), + VTW(1, 14), + VTW(1, 15), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 16, XSIMD_STRING("hc2cbdftv_16"), twinstr, &GENUS, {99, 38, 4, 0} }; + +void XSIMD(codelet_hc2cbdftv_16) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_16, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */