Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_25.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_25.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,730 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:48 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cf_25 -include r2cf.h */ + +/* + * This function contains 200 FP additions, 168 FP multiplications, + * (or, 44 additions, 12 multiplications, 156 fused multiply/add), + * 157 stack variables, 66 constants, and 50 memory accesses + */ +#include "r2cf.h" + +static void r2cf_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP792626838, +0.792626838241819413632131824093538848057784557); + DK(KP876091699, +0.876091699473550838204498029706869638173524346); + DK(KP809385824, +0.809385824416008241660603814668679683846476688); + DK(KP860541664, +0.860541664367944677098261680920518816412804187); + DK(KP681693190, +0.681693190061530575150324149145440022633095390); + DK(KP560319534, +0.560319534973832390111614715371676131169633784); + DK(KP997675361, +0.997675361079556513670859573984492383596555031); + DK(KP237294955, +0.237294955877110315393888866460840817927895961); + DK(KP897376177, +0.897376177523557693138608077137219684419427330); + DK(KP923225144, +0.923225144846402650453449441572664695995209956); + DK(KP956723877, +0.956723877038460305821989399535483155872969262); + DK(KP949179823, +0.949179823508441261575555465843363271711583843); + DK(KP669429328, +0.669429328479476605641803240971985825917022098); + DK(KP570584518, +0.570584518783621657366766175430996792655723863); + DK(KP262346850, +0.262346850930607871785420028382979691334784273); + DK(KP876306680, +0.876306680043863587308115903922062583399064238); + DK(KP906616052, +0.906616052148196230441134447086066874408359177); + DK(KP683113946, +0.683113946453479238701949862233725244439656928); + DK(KP559154169, +0.559154169276087864842202529084232643714075927); + DK(KP921078979, +0.921078979742360627699756128143719920817673854); + DK(KP904508497, +0.904508497187473712051146708591409529430077295); + DK(KP999754674, +0.999754674276473633366203429228112409535557487); + DK(KP968583161, +0.968583161128631119490168375464735813836012403); + DK(KP242145790, +0.242145790282157779872542093866183953459003101); + DK(KP904730450, +0.904730450839922351881287709692877908104763647); + DK(KP845997307, +0.845997307939530944175097360758058292389769300); + DK(KP855719849, +0.855719849902058969314654733608091555096772472); + DK(KP982009705, +0.982009705009746369461829878184175962711969869); + DK(KP916574801, +0.916574801383451584742370439148878693530976769); + DK(KP690983005, +0.690983005625052575897706582817180941139845410); + DK(KP952936919, +0.952936919628306576880750665357914584765951388); + DK(KP998026728, +0.998026728428271561952336806863450553336905220); + DK(KP831864738, +0.831864738706457140726048799369896829771167132); + DK(KP803003575, +0.803003575438660414833440593570376004635464850); + DK(KP522616830, +0.522616830205754336872861364785224694908468440); + DK(KP829049696, +0.829049696159252993975487806364305442437946767); + DK(KP999544308, +0.999544308746292983948881682379742149196758193); + DK(KP772036680, +0.772036680810363904029489473607579825330539880); + DK(KP763932022, +0.763932022500210303590826331268723764559381640); + DK(KP992114701, +0.992114701314477831049793042785778521453036709); + DK(KP447417479, +0.447417479732227551498980015410057305749330693); + DK(KP734762448, +0.734762448793050413546343770063151342619912334); + DK(KP894834959, +0.894834959464455102997960030820114611498661386); + DK(KP867381224, +0.867381224396525206773171885031575671309956167); + DK(KP958953096, +0.958953096729998668045963838399037225970891871); + DK(KP912575812, +0.912575812670962425556968549836277086778922727); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP244189809, +0.244189809627953270309879511234821255780225091); + DK(KP269969613, +0.269969613759572083574752974412347470060951301); + DK(KP522847744, +0.522847744331509716623755382187077770911012542); + DK(KP578046249, +0.578046249379945007321754579646815604023525655); + DK(KP603558818, +0.603558818296015001454675132653458027918768137); + DK(KP667278218, +0.667278218140296670899089292254759909713898805); + DK(KP447533225, +0.447533225982656890041886979663652563063114397); + DK(KP494780565, +0.494780565770515410344588413655324772219443730); + DK(KP987388751, +0.987388751065621252324603216482382109400433949); + DK(KP893101515, +0.893101515366181661711202267938416198338079437); + DK(KP132830569, +0.132830569247582714407653942074819768844536507); + DK(KP120146378, +0.120146378570687701782758537356596213647956445); + DK(KP059835404, +0.059835404262124915169548397419498386427871950); + DK(KP066152395, +0.066152395967733048213034281011006031460903353); + DK(KP786782374, +0.786782374965295178365099601674911834788448471); + DK(KP869845200, +0.869845200362138853122720822420327157933056305); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) { + E T2H, T2w, T2x, T2A, T2C, T2v, T2M, T2y, T2B, T2N; + { + E T2u, TJ, T1O, T39, T2t, TB, T21, T1M, T2e, T26, T1B, T1r, T1k, T1c, T9; + E T1X, T1R, T2k, T29, T1z, T1v, T1h, TX, Ti, T13, T2a, T2j, T1U, T1Y, TQ; + E T1g, T1u, T1y, T12, Ts, T11, T1I; + { + E Tt, Tw, T16, Tx, Ty; + { + E T2p, TG, TH, TD, TE, TI, T2r; + T2p = R0[0]; + TG = R0[WS(rs, 5)]; + TH = R1[WS(rs, 7)]; + TD = R1[WS(rs, 2)]; + TE = R0[WS(rs, 10)]; + Tt = R1[WS(rs, 1)]; + TI = TG - TH; + T2r = TG + TH; + { + E TF, T2q, Tu, Tv, T2s; + TF = TD - TE; + T2q = TD + TE; + Tu = R0[WS(rs, 4)]; + Tv = R1[WS(rs, 11)]; + T2u = T2q - T2r; + T2s = T2q + T2r; + TJ = FMA(KP618033988, TI, TF); + T1O = FNMS(KP618033988, TF, TI); + T39 = T2p + T2s; + T2t = FNMS(KP250000000, T2s, T2p); + Tw = Tu + Tv; + T16 = Tv - Tu; + Tx = R1[WS(rs, 6)]; + Ty = R0[WS(rs, 9)]; + } + } + { + E T1P, TW, TS, TR; + { + E T1, T5, T1L, T18, T1a, TA, T4, TU, T6, T19; + T1 = R0[WS(rs, 2)]; + { + E T2, T17, Tz, T3; + T2 = R1[WS(rs, 4)]; + T17 = Tx - Ty; + Tz = Tx + Ty; + T3 = R0[WS(rs, 12)]; + T5 = R0[WS(rs, 7)]; + T1L = FMA(KP618033988, T16, T17); + T18 = FNMS(KP618033988, T17, T16); + T1a = Tz - Tw; + TA = Tw + Tz; + T4 = T2 + T3; + TU = T3 - T2; + T6 = R1[WS(rs, 9)]; + } + TB = Tt + TA; + T19 = FNMS(KP250000000, TA, Tt); + { + E T7, TV, T1b, T1K, T8; + T7 = T5 + T6; + TV = T5 - T6; + T1b = FNMS(KP559016994, T1a, T19); + T1K = FMA(KP559016994, T1a, T19); + T1P = FMA(KP618033988, TU, TV); + TW = FNMS(KP618033988, TV, TU); + TS = T4 - T7; + T8 = T4 + T7; + T21 = FMA(KP869845200, T1K, T1L); + T1M = FNMS(KP786782374, T1L, T1K); + T2e = FMA(KP066152395, T1K, T1L); + T26 = FNMS(KP059835404, T1L, T1K); + T1B = FMA(KP120146378, T18, T1b); + T1r = FNMS(KP132830569, T1b, T18); + T1k = FMA(KP893101515, T18, T1b); + T1c = FNMS(KP987388751, T1b, T18); + T9 = T1 + T8; + TR = FMS(KP250000000, T8, T1); + } + } + { + E Ta, Te, TK, Td, Tf; + Ta = R1[0]; + { + E Tb, Tc, T1Q, TT; + Tb = R0[WS(rs, 3)]; + Tc = R1[WS(rs, 10)]; + T1Q = FMA(KP559016994, TS, TR); + TT = FNMS(KP559016994, TS, TR); + Te = R1[WS(rs, 5)]; + TK = Tb - Tc; + Td = Tb + Tc; + T1X = FNMS(KP120146378, T1P, T1Q); + T1R = FMA(KP132830569, T1Q, T1P); + T2k = FMA(KP494780565, T1Q, T1P); + T29 = FNMS(KP447533225, T1P, T1Q); + T1z = FMA(KP869845200, TT, TW); + T1v = FNMS(KP786782374, TW, TT); + T1h = FNMS(KP667278218, TT, TW); + TX = FMA(KP603558818, TW, TT); + Tf = R0[WS(rs, 8)]; + } + { + E Tk, T1S, TM, TO, Tn, TZ, TN, T10, Tq, To, Th, Tp, TP, T1T, Tr; + Tk = R0[WS(rs, 1)]; + { + E Tl, TL, Tg, Tm; + Tl = R1[WS(rs, 3)]; + TL = Tf - Te; + Tg = Te + Tf; + Tm = R0[WS(rs, 11)]; + To = R0[WS(rs, 6)]; + T1S = FMA(KP618033988, TK, TL); + TM = FNMS(KP618033988, TL, TK); + TO = Td - Tg; + Th = Td + Tg; + Tn = Tl + Tm; + TZ = Tm - Tl; + Tp = R1[WS(rs, 8)]; + } + Ti = Ta + Th; + TN = FNMS(KP250000000, Th, Ta); + T10 = Tp - To; + Tq = To + Tp; + TP = FMA(KP559016994, TO, TN); + T1T = FNMS(KP559016994, TO, TN); + Tr = Tn + Tq; + T13 = Tn - Tq; + T2a = FMA(KP578046249, T1T, T1S); + T2j = FNMS(KP522847744, T1S, T1T); + T1U = FNMS(KP987388751, T1T, T1S); + T1Y = FMA(KP893101515, T1S, T1T); + TQ = FMA(KP269969613, TP, TM); + T1g = FNMS(KP244189809, TM, TP); + T1u = FNMS(KP603558818, TM, TP); + T1y = FMA(KP667278218, TP, TM); + T12 = FMS(KP250000000, Tr, Tk); + Ts = Tk + Tr; + T11 = FMA(KP618033988, T10, TZ); + T1I = FNMS(KP618033988, TZ, T10); + } + } + } + } + { + E T2f, T27, T1j, T15, T2K, T2J, T2I, T2T, T1Z, T2X, T1N, T1V, T2W, T2U, T22; + E T1G; + { + E T3a, T3b, T20, T1J, T1C, T1s; + { + E Tj, TC, T1H, T14; + T3a = T9 + Ti; + Tj = T9 - Ti; + TC = Ts - TB; + T3b = Ts + TB; + T1H = FMA(KP559016994, T13, T12); + T14 = FNMS(KP559016994, T13, T12); + Ci[WS(csi, 10)] = KP951056516 * (FMA(KP618033988, Tj, TC)); + Ci[WS(csi, 5)] = KP951056516 * (FNMS(KP618033988, TC, Tj)); + T20 = FNMS(KP066152395, T1H, T1I); + T1J = FMA(KP059835404, T1I, T1H); + T2f = FMA(KP667278218, T1H, T1I); + T27 = FNMS(KP603558818, T1I, T1H); + T1C = FNMS(KP494780565, T14, T11); + T1s = FMA(KP447533225, T11, T14); + T1j = FNMS(KP522847744, T11, T14); + T15 = FMA(KP578046249, T14, T11); + } + { + E T1A, T1t, T1w, T3c, T3e, T1D, T1x, T3d, T1E, T1F; + T1A = FNMS(KP912575812, T1z, T1y); + T2K = FMA(KP912575812, T1z, T1y); + T2J = FNMS(KP958953096, T1s, T1r); + T1t = FMA(KP958953096, T1s, T1r); + T1w = FMA(KP912575812, T1v, T1u); + T2H = FNMS(KP912575812, T1v, T1u); + T3c = T3a + T3b; + T3e = T3a - T3b; + T2I = FMA(KP867381224, T1C, T1B); + T1D = FNMS(KP867381224, T1C, T1B); + T1x = FNMS(KP894834959, T1w, T1t); + T2T = FMA(KP734762448, T1Y, T1X); + T1Z = FNMS(KP734762448, T1Y, T1X); + T3d = FNMS(KP250000000, T3c, T39); + Cr[0] = T3c + T39; + T1E = FMA(KP447417479, T1w, T1D); + Ci[WS(csi, 4)] = KP951056516 * (FMA(KP992114701, T1x, TJ)); + Cr[WS(csr, 10)] = FNMS(KP559016994, T3e, T3d); + Cr[WS(csr, 5)] = FMA(KP559016994, T3e, T3d); + T1F = FMA(KP763932022, T1E, T1t); + T2X = FMA(KP772036680, T1M, T1J); + T1N = FNMS(KP772036680, T1M, T1J); + T1V = FMA(KP734762448, T1U, T1R); + T2W = FNMS(KP734762448, T1U, T1R); + T2U = FNMS(KP772036680, T21, T20); + T22 = FMA(KP772036680, T21, T20); + T1G = FMA(KP999544308, T1F, T1A); + } + } + { + E T1i, T1l, T2l, T2R, T2g, T2Q, T28, T32, T1f, T1n, T1p, T33, T2b; + { + E T24, TY, T1d, T1W, T23, T25, T1m, T1e; + T2w = FMA(KP829049696, T1h, T1g); + T1i = FNMS(KP829049696, T1h, T1g); + T1W = FNMS(KP992114701, T1V, T1O); + T23 = FNMS(KP522616830, T1V, T22); + Ci[WS(csi, 9)] = KP951056516 * (FNMS(KP803003575, T1G, TJ)); + T2x = FNMS(KP831864738, T1k, T1j); + T1l = FMA(KP831864738, T1k, T1j); + Ci[WS(csi, 3)] = KP998026728 * (FNMS(KP952936919, T1W, T1N)); + T24 = FMA(KP690983005, T23, T1N); + TY = FNMS(KP916574801, TX, TQ); + T2A = FMA(KP916574801, TX, TQ); + T2C = FNMS(KP831864738, T1c, T15); + T1d = FMA(KP831864738, T1c, T15); + T2l = FNMS(KP982009705, T2k, T2j); + T2R = FMA(KP982009705, T2k, T2j); + T25 = FNMS(KP855719849, T24, T1Z); + T2g = FMA(KP845997307, T2f, T2e); + T2Q = FNMS(KP845997307, T2f, T2e); + T1m = FMA(KP904730450, T1d, TY); + T1e = FNMS(KP904730450, T1d, TY); + Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP992114701, T25, T1O))); + T28 = FNMS(KP845997307, T27, T26); + T32 = FMA(KP845997307, T27, T26); + T1f = FNMS(KP242145790, T1e, TJ); + Ci[WS(csi, 1)] = -(KP951056516 * (FMA(KP968583161, T1e, TJ))); + T1n = FNMS(KP999754674, T1m, T1l); + T1p = FNMS(KP904508497, T1m, T1i); + T33 = FMA(KP921078979, T2a, T29); + T2b = FNMS(KP921078979, T2a, T29); + } + { + E T2P, T2Z, T2V, T2O; + { + E T2d, T2n, T2i, T2Y, T2m, T2o; + T2P = FNMS(KP559016994, T2u, T2t); + T2v = FMA(KP559016994, T2u, T2t); + { + E T1o, T1q, T2h, T2c; + T1o = FNMS(KP559154169, T1n, T1i); + T1q = FMA(KP683113946, T1p, T1l); + T2h = FMA(KP906616052, T2b, T28); + T2c = FNMS(KP906616052, T2b, T28); + Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP968583161, T1o, T1f))); + Ci[WS(csi, 11)] = -(KP951056516 * (FMA(KP876306680, T1q, T1f))); + T2d = FMA(KP262346850, T2c, T1O); + Ci[WS(csi, 2)] = -(KP998026728 * (FNMS(KP952936919, T1O, T2c))); + T2n = T2g + T2h; + T2i = FMA(KP618033988, T2h, T2g); + } + T2m = FMA(KP570584518, T2l, T2i); + T2o = FNMS(KP669429328, T2n, T2l); + Ci[WS(csi, 12)] = KP951056516 * (FNMS(KP949179823, T2m, T2d)); + Ci[WS(csi, 7)] = KP951056516 * (FNMS(KP876306680, T2o, T2d)); + T2V = FMA(KP956723877, T2U, T2T); + T2Y = FMA(KP522616830, T2T, T2X); + T2Z = FNMS(KP763932022, T2Y, T2U); + } + Cr[WS(csr, 3)] = FMA(KP992114701, T2V, T2P); + { + E T30, T34, T2S, T31, T35; + T30 = FMA(KP855719849, T2Z, T2W); + T34 = FNMS(KP923225144, T2R, T2Q); + T2S = FMA(KP923225144, T2R, T2Q); + Cr[WS(csr, 8)] = FNMS(KP897376177, T30, T2P); + T31 = FNMS(KP237294955, T2S, T2P); + Cr[WS(csr, 2)] = FMA(KP949179823, T2S, T2P); + T35 = FNMS(KP997675361, T34, T33); + { + E T37, T36, T38, T2L; + T37 = FNMS(KP904508497, T34, T32); + T36 = FMA(KP560319534, T35, T32); + T38 = FNMS(KP681693190, T37, T33); + Cr[WS(csr, 12)] = FNMS(KP949179823, T36, T31); + Cr[WS(csr, 7)] = FNMS(KP860541664, T38, T31); + T2O = FNMS(KP809385824, T2K, T2I); + T2L = FNMS(KP447417479, T2K, T2J); + T2M = FNMS(KP690983005, T2L, T2I); + } + } + Cr[WS(csr, 4)] = FNMS(KP992114701, T2O, T2v); + } + } + } + } + T2y = FNMS(KP904730450, T2x, T2w); + T2B = FMA(KP904730450, T2x, T2w); + T2N = FNMS(KP999544308, T2M, T2H); + { + E T2z, T2D, T2F, T2E, T2G; + T2z = FNMS(KP242145790, T2y, T2v); + Cr[WS(csr, 1)] = FMA(KP968583161, T2y, T2v); + T2D = FMA(KP904730450, T2C, T2B); + T2F = T2A + T2B; + Cr[WS(csr, 9)] = FNMS(KP803003575, T2N, T2v); + T2E = FNMS(KP618033988, T2D, T2A); + T2G = FMA(KP683113946, T2F, T2C); + Cr[WS(csr, 6)] = FNMS(KP876091699, T2E, T2z); + Cr[WS(csr, 11)] = FNMS(KP792626838, T2G, T2z); + } + } + } +} + +static const kr2c_desc desc = { 25, "r2cf_25", {44, 12, 156, 0}, &GENUS }; + +void X(codelet_r2cf_25) (planner *p) { + X(kr2c_register) (p, r2cf_25, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 25 -name r2cf_25 -include r2cf.h */ + +/* + * This function contains 200 FP additions, 140 FP multiplications, + * (or, 117 additions, 57 multiplications, 83 fused multiply/add), + * 101 stack variables, 40 constants, and 50 memory accesses + */ +#include "r2cf.h" + +static void r2cf_25(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP998026728, +0.998026728428271561952336806863450553336905220); + DK(KP125581039, +0.125581039058626752152356449131262266244969664); + DK(KP1_996053456, +1.996053456856543123904673613726901106673810439); + DK(KP062790519, +0.062790519529313376076178224565631133122484832); + DK(KP809016994, +0.809016994374947424102293417182819058860154590); + DK(KP309016994, +0.309016994374947424102293417182819058860154590); + DK(KP1_369094211, +1.369094211857377347464566715242418539779038465); + DK(KP728968627, +0.728968627421411523146730319055259111372571664); + DK(KP963507348, +0.963507348203430549974383005744259307057084020); + DK(KP876306680, +0.876306680043863587308115903922062583399064238); + DK(KP497379774, +0.497379774329709576484567492012895936835134813); + DK(KP968583161, +0.968583161128631119490168375464735813836012403); + DK(KP684547105, +0.684547105928688673732283357621209269889519233); + DK(KP1_457937254, +1.457937254842823046293460638110518222745143328); + DK(KP481753674, +0.481753674101715274987191502872129653528542010); + DK(KP1_752613360, +1.752613360087727174616231807844125166798128477); + DK(KP248689887, +0.248689887164854788242283746006447968417567406); + DK(KP1_937166322, +1.937166322257262238980336750929471627672024806); + DK(KP992114701, +0.992114701314477831049793042785778521453036709); + DK(KP250666467, +0.250666467128608490746237519633017587885836494); + DK(KP425779291, +0.425779291565072648862502445744251703979973042); + DK(KP1_809654104, +1.809654104932039055427337295865395187940827822); + DK(KP1_274847979, +1.274847979497379420353425623352032390869834596); + DK(KP770513242, +0.770513242775789230803009636396177847271667672); + DK(KP844327925, +0.844327925502015078548558063966681505381659241); + DK(KP1_071653589, +1.071653589957993236542617535735279956127150691); + DK(KP125333233, +0.125333233564304245373118759816508793942918247); + DK(KP1_984229402, +1.984229402628955662099586085571557042906073418); + DK(KP904827052, +0.904827052466019527713668647932697593970413911); + DK(KP851558583, +0.851558583130145297725004891488503407959946084); + DK(KP637423989, +0.637423989748689710176712811676016195434917298); + DK(KP1_541026485, +1.541026485551578461606019272792355694543335344); + DK(KP535826794, +0.535826794978996618271308767867639978063575346); + DK(KP1_688655851, +1.688655851004030157097116127933363010763318483); + DK(KP293892626, +0.293892626146236564584352977319536384298826219); + DK(KP475528258, +0.475528258147576786058219666689691071702849317); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(100, rs), MAKE_VOLATILE_STRIDE(100, csr), MAKE_VOLATILE_STRIDE(100, csi)) { + E T8, T1j, T1V, T1l, T7, T9, Ta, T12, T2u, T1O, T19, T1P, Ti, T2r, T1K; + E Tp, T1L, Tx, T2q, T1H, TE, T1I, TN, T2t, T1R, TU, T1S, T6, T1k, T3; + E T2s, T2v; + T8 = R0[0]; + { + E T4, T5, T1, T2; + T4 = R0[WS(rs, 5)]; + T5 = R1[WS(rs, 7)]; + T6 = T4 + T5; + T1k = T4 - T5; + T1 = R1[WS(rs, 2)]; + T2 = R0[WS(rs, 10)]; + T3 = T1 + T2; + T1j = T1 - T2; + } + T1V = KP951056516 * T1k; + T1l = FMA(KP951056516, T1j, KP587785252 * T1k); + T7 = KP559016994 * (T3 - T6); + T9 = T3 + T6; + Ta = FNMS(KP250000000, T9, T8); + { + E T16, T13, T14, TY, T17, T11, T15, T18; + T16 = R1[WS(rs, 1)]; + { + E TW, TX, TZ, T10; + TW = R0[WS(rs, 4)]; + TX = R1[WS(rs, 11)]; + T13 = TW + TX; + TZ = R1[WS(rs, 6)]; + T10 = R0[WS(rs, 9)]; + T14 = TZ + T10; + TY = TW - TX; + T17 = T13 + T14; + T11 = TZ - T10; + } + T12 = FMA(KP475528258, TY, KP293892626 * T11); + T2u = T16 + T17; + T1O = FNMS(KP293892626, TY, KP475528258 * T11); + T15 = KP559016994 * (T13 - T14); + T18 = FNMS(KP250000000, T17, T16); + T19 = T15 + T18; + T1P = T18 - T15; + } + { + E Tm, Tj, Tk, Te, Tn, Th, Tl, To; + Tm = R1[0]; + { + E Tc, Td, Tf, Tg; + Tc = R0[WS(rs, 3)]; + Td = R1[WS(rs, 10)]; + Tj = Tc + Td; + Tf = R1[WS(rs, 5)]; + Tg = R0[WS(rs, 8)]; + Tk = Tf + Tg; + Te = Tc - Td; + Tn = Tj + Tk; + Th = Tf - Tg; + } + Ti = FMA(KP475528258, Te, KP293892626 * Th); + T2r = Tm + Tn; + T1K = FNMS(KP293892626, Te, KP475528258 * Th); + Tl = KP559016994 * (Tj - Tk); + To = FNMS(KP250000000, Tn, Tm); + Tp = Tl + To; + T1L = To - Tl; + } + { + E TB, Ty, Tz, Tt, TC, Tw, TA, TD; + TB = R0[WS(rs, 2)]; + { + E Tr, Ts, Tu, Tv; + Tr = R1[WS(rs, 4)]; + Ts = R0[WS(rs, 12)]; + Ty = Tr + Ts; + Tu = R0[WS(rs, 7)]; + Tv = R1[WS(rs, 9)]; + Tz = Tu + Tv; + Tt = Tr - Ts; + TC = Ty + Tz; + Tw = Tu - Tv; + } + Tx = FMA(KP475528258, Tt, KP293892626 * Tw); + T2q = TB + TC; + T1H = FNMS(KP293892626, Tt, KP475528258 * Tw); + TA = KP559016994 * (Ty - Tz); + TD = FNMS(KP250000000, TC, TB); + TE = TA + TD; + T1I = TD - TA; + } + { + E TR, TO, TP, TJ, TS, TM, TQ, TT; + TR = R0[WS(rs, 1)]; + { + E TH, TI, TK, TL; + TH = R1[WS(rs, 3)]; + TI = R0[WS(rs, 11)]; + TO = TH + TI; + TK = R0[WS(rs, 6)]; + TL = R1[WS(rs, 8)]; + TP = TK + TL; + TJ = TH - TI; + TS = TO + TP; + TM = TK - TL; + } + TN = FMA(KP475528258, TJ, KP293892626 * TM); + T2t = TR + TS; + T1R = FNMS(KP293892626, TJ, KP475528258 * TM); + TQ = KP559016994 * (TO - TP); + TT = FNMS(KP250000000, TS, TR); + TU = TQ + TT; + T1S = TT - TQ; + } + T2s = T2q - T2r; + T2v = T2t - T2u; + Ci[WS(csi, 5)] = FNMS(KP587785252, T2v, KP951056516 * T2s); + Ci[WS(csi, 10)] = FMA(KP587785252, T2s, KP951056516 * T2v); + { + E T2z, T2y, T2A, T2w, T2x, T2B; + T2z = T8 + T9; + T2w = T2r + T2q; + T2x = T2t + T2u; + T2y = KP559016994 * (T2w - T2x); + T2A = T2w + T2x; + Cr[0] = T2z + T2A; + T2B = FNMS(KP250000000, T2A, T2z); + Cr[WS(csr, 5)] = T2y + T2B; + Cr[WS(csr, 10)] = T2B - T2y; + } + { + E Tb, Tq, TF, TG, T1E, T1F, T1G, T1B, T1C, T1D, TV, T1a, T1b, T1o, T1r; + E T1s, T1z, T1x, T1e, T1h, T1i, T1u, T1t; + Tb = T7 + Ta; + Tq = FMA(KP1_688655851, Ti, KP535826794 * Tp); + TF = FMA(KP1_541026485, Tx, KP637423989 * TE); + TG = Tq - TF; + T1E = FMA(KP851558583, TN, KP904827052 * TU); + T1F = FMA(KP1_984229402, T12, KP125333233 * T19); + T1G = T1E + T1F; + T1B = FNMS(KP844327925, Tp, KP1_071653589 * Ti); + T1C = FNMS(KP1_274847979, Tx, KP770513242 * TE); + T1D = T1B + T1C; + TV = FNMS(KP425779291, TU, KP1_809654104 * TN); + T1a = FNMS(KP992114701, T19, KP250666467 * T12); + T1b = TV + T1a; + { + E T1m, T1n, T1p, T1q; + T1m = FMA(KP1_937166322, Ti, KP248689887 * Tp); + T1n = FMA(KP1_071653589, Tx, KP844327925 * TE); + T1o = T1m + T1n; + T1p = FMA(KP1_752613360, TN, KP481753674 * TU); + T1q = FMA(KP1_457937254, T12, KP684547105 * T19); + T1r = T1p + T1q; + T1s = T1o + T1r; + T1z = T1q - T1p; + T1x = T1n - T1m; + } + { + E T1c, T1d, T1f, T1g; + T1c = FNMS(KP497379774, Ti, KP968583161 * Tp); + T1d = FNMS(KP1_688655851, Tx, KP535826794 * TE); + T1e = T1c + T1d; + T1f = FNMS(KP963507348, TN, KP876306680 * TU); + T1g = FNMS(KP1_369094211, T12, KP728968627 * T19); + T1h = T1f + T1g; + T1i = T1e + T1h; + T1u = T1f - T1g; + T1t = T1d - T1c; + } + Cr[WS(csr, 1)] = Tb + T1i; + Ci[WS(csi, 1)] = -(T1l + T1s); + Cr[WS(csr, 4)] = Tb + TG + T1b; + Ci[WS(csi, 4)] = T1l + T1D - T1G; + Ci[WS(csi, 9)] = FMA(KP309016994, T1D, T1l) + FMA(KP587785252, T1a - TV, KP809016994 * T1G) - (KP951056516 * (Tq + TF)); + Cr[WS(csr, 9)] = FMA(KP309016994, TG, Tb) + FMA(KP951056516, T1B - T1C, KP587785252 * (T1F - T1E)) - (KP809016994 * T1b); + { + E T1v, T1w, T1y, T1A; + T1v = FMS(KP250000000, T1s, T1l); + T1w = KP559016994 * (T1r - T1o); + Ci[WS(csi, 11)] = FMA(KP587785252, T1t, KP951056516 * T1u) + T1v - T1w; + Ci[WS(csi, 6)] = FMA(KP951056516, T1t, T1v) + FNMS(KP587785252, T1u, T1w); + T1y = FNMS(KP250000000, T1i, Tb); + T1A = KP559016994 * (T1e - T1h); + Cr[WS(csr, 11)] = FMA(KP587785252, T1x, T1y) + FNMA(KP951056516, T1z, T1A); + Cr[WS(csr, 6)] = FMA(KP951056516, T1x, T1A) + FMA(KP587785252, T1z, T1y); + } + } + { + E T1W, T1X, T1J, T1M, T1N, T21, T22, T23, T1Q, T1T, T1U, T1Y, T1Z, T20, T26; + E T29, T2a, T2k, T2j, T2l, T2m, T2d, T2o, T2i; + T1W = FNMS(KP587785252, T1j, T1V); + T1X = Ta - T7; + T1J = FNMS(KP125333233, T1I, KP1_984229402 * T1H); + T1M = FMA(KP1_457937254, T1K, KP684547105 * T1L); + T1N = T1J - T1M; + T21 = FNMS(KP1_996053456, T1R, KP062790519 * T1S); + T22 = FMA(KP1_541026485, T1O, KP637423989 * T1P); + T23 = T21 - T22; + T1Q = FNMS(KP770513242, T1P, KP1_274847979 * T1O); + T1T = FMA(KP125581039, T1R, KP998026728 * T1S); + T1U = T1Q - T1T; + T1Y = FNMS(KP1_369094211, T1K, KP728968627 * T1L); + T1Z = FMA(KP250666467, T1H, KP992114701 * T1I); + T20 = T1Y - T1Z; + { + E T24, T25, T27, T28; + T24 = FNMS(KP481753674, T1L, KP1_752613360 * T1K); + T25 = FMA(KP851558583, T1H, KP904827052 * T1I); + T26 = T24 - T25; + T27 = FNMS(KP844327925, T1S, KP1_071653589 * T1R); + T28 = FNMS(KP998026728, T1P, KP125581039 * T1O); + T29 = T27 + T28; + T2a = T26 + T29; + T2k = T27 - T28; + T2j = T24 + T25; + } + { + E T2b, T2c, T2g, T2h; + T2b = FNMS(KP425779291, T1I, KP1_809654104 * T1H); + T2c = FMA(KP963507348, T1K, KP876306680 * T1L); + T2l = T2c + T2b; + T2g = FMA(KP1_688655851, T1R, KP535826794 * T1S); + T2h = FMA(KP1_996053456, T1O, KP062790519 * T1P); + T2m = T2g + T2h; + T2d = T2b - T2c; + T2o = T2l + T2m; + T2i = T2g - T2h; + } + Ci[WS(csi, 2)] = T1W + T2a; + Cr[WS(csr, 2)] = T1X + T2o; + Ci[WS(csi, 3)] = T1N + T1U - T1W; + Cr[WS(csr, 3)] = T1X + T20 + T23; + Cr[WS(csr, 8)] = FMA(KP309016994, T20, T1X) + FNMA(KP809016994, T23, KP587785252 * (T1T + T1Q)) - (KP951056516 * (T1M + T1J)); + Ci[WS(csi, 8)] = FNMS(KP587785252, T21 + T22, KP309016994 * T1N) + FNMA(KP809016994, T1U, KP951056516 * (T1Y + T1Z)) - T1W; + { + E T2e, T2f, T2n, T2p; + T2e = KP559016994 * (T26 - T29); + T2f = FNMS(KP250000000, T2a, T1W); + Ci[WS(csi, 7)] = FMA(KP951056516, T2d, T2e) + FNMS(KP587785252, T2i, T2f); + Ci[WS(csi, 12)] = FMA(KP587785252, T2d, T2f) + FMS(KP951056516, T2i, T2e); + T2n = KP559016994 * (T2l - T2m); + T2p = FNMS(KP250000000, T2o, T1X); + Cr[WS(csr, 7)] = FMA(KP951056516, T2j, KP587785252 * T2k) + T2n + T2p; + Cr[WS(csr, 12)] = FMA(KP587785252, T2j, T2p) + FNMA(KP951056516, T2k, T2n); + } + } + } + } +} + +static const kr2c_desc desc = { 25, "r2cf_25", {117, 57, 83, 0}, &GENUS }; + +void X(codelet_r2cf_25) (planner *p) { + X(kr2c_register) (p, r2cf_25, &desc); +} + +#endif /* HAVE_FMA */