Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_11.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_11.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,230 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:45 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ + +/* + * This function contains 60 FP additions, 50 FP multiplications, + * (or, 15 additions, 5 multiplications, 45 fused multiply/add), + * 51 stack variables, 10 constants, and 22 memory accesses + */ +#include "r2cf.h" + +static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP959492973, +0.959492973614497389890368057066327699062454848); + DK(KP876768831, +0.876768831002589333891339807079336796764054852); + DK(KP918985947, +0.918985947228994779780736114132655398124909697); + DK(KP989821441, +0.989821441880932732376092037776718787376519372); + DK(KP778434453, +0.778434453334651800608337670740821884709317477); + DK(KP830830026, +0.830830026003772851058548298459246407048009821); + DK(KP715370323, +0.715370323453429719112414662767260662417897278); + DK(KP634356270, +0.634356270682424498893150776899916060542806975); + DK(KP342584725, +0.342584725681637509502641509861112333758894680); + DK(KP521108558, +0.521108558113202722944698153526659300680427422); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { + E T1, Tg, TF, TB, TI, TL, Tz, TA; + { + E T4, TC, TE, T7, TD, Ta, TS, TG, TJ, Td, TP, TM, Ty, Tq, Th; + E Tt, Tl; + T1 = R0[0]; + { + E Tb, Tc, Tx, Tp; + { + E T2, T3, Te, Tf; + T2 = R1[0]; + T3 = R0[WS(rs, 5)]; + Te = R1[WS(rs, 2)]; + Tf = R0[WS(rs, 3)]; + { + E T5, T6, T8, T9; + T5 = R0[WS(rs, 1)]; + T4 = T2 + T3; + TC = T3 - T2; + Tg = Te + Tf; + TE = Tf - Te; + T6 = R1[WS(rs, 4)]; + T8 = R1[WS(rs, 1)]; + T9 = R0[WS(rs, 4)]; + Tb = R0[WS(rs, 2)]; + T7 = T5 + T6; + TD = T5 - T6; + Ta = T8 + T9; + TF = T9 - T8; + Tc = R1[WS(rs, 3)]; + } + } + TS = FMA(KP521108558, TC, TD); + TG = FMA(KP521108558, TF, TE); + TJ = FMA(KP521108558, TE, TC); + Td = Tb + Tc; + TB = Tb - Tc; + Tx = FNMS(KP342584725, Ta, T7); + Tp = FNMS(KP342584725, T4, Ta); + TP = FNMS(KP521108558, TB, TF); + TM = FNMS(KP521108558, TD, TB); + Ty = FNMS(KP634356270, Tx, Td); + Tq = FNMS(KP634356270, Tp, Tg); + Th = FNMS(KP342584725, Tg, Td); + Tt = FNMS(KP342584725, Td, T4); + Tl = FNMS(KP342584725, T7, Tg); + } + { + E Tu, Ts, TN, Tv; + { + E Tm, TU, Tj, Ti, TT; + TT = FMA(KP715370323, TS, TF); + Ti = FNMS(KP634356270, Th, Ta); + Tu = FNMS(KP634356270, Tt, T7); + Tm = FNMS(KP634356270, Tl, T4); + TU = FMA(KP830830026, TT, TB); + Tj = FNMS(KP778434453, Ti, T7); + { + E Tk, TR, To, Tn, TQ, Tr; + TQ = FMA(KP715370323, TP, TC); + Tn = FNMS(KP778434453, Tm, Ta); + Ci[WS(csi, 5)] = KP989821441 * (FMA(KP918985947, TU, TE)); + Tk = FNMS(KP876768831, Tj, T4); + TR = FNMS(KP830830026, TQ, TE); + To = FNMS(KP876768831, Tn, Td); + Tr = FNMS(KP778434453, Tq, Td); + Cr[WS(csr, 5)] = FNMS(KP959492973, Tk, T1); + Ci[WS(csi, 4)] = KP989821441 * (FNMS(KP918985947, TR, TD)); + Cr[WS(csr, 4)] = FNMS(KP959492973, To, T1); + Ts = FNMS(KP876768831, Tr, T7); + } + } + TN = FNMS(KP715370323, TM, TE); + Tv = FNMS(KP778434453, Tu, Tg); + Cr[0] = T1 + T4 + T7 + Ta + Td + Tg; + Cr[WS(csr, 3)] = FNMS(KP959492973, Ts, T1); + { + E TO, Tw, TH, TK; + TO = FNMS(KP830830026, TN, TF); + Tw = FNMS(KP876768831, Tv, Ta); + TH = FMA(KP715370323, TG, TD); + TK = FNMS(KP715370323, TJ, TB); + Ci[WS(csi, 3)] = KP989821441 * (FNMS(KP918985947, TO, TC)); + Cr[WS(csr, 2)] = FNMS(KP959492973, Tw, T1); + TI = FNMS(KP830830026, TH, TC); + TL = FMA(KP830830026, TK, TD); + Tz = FNMS(KP778434453, Ty, T4); + } + } + } + Ci[WS(csi, 2)] = KP989821441 * (FMA(KP918985947, TI, TB)); + Ci[WS(csi, 1)] = KP989821441 * (FNMS(KP918985947, TL, TF)); + TA = FNMS(KP876768831, Tz, Tg); + Cr[WS(csr, 1)] = FNMS(KP959492973, TA, T1); + } + } +} + +static const kr2c_desc desc = { 11, "r2cf_11", {15, 5, 45, 0}, &GENUS }; + +void X(codelet_r2cf_11) (planner *p) { + X(kr2c_register) (p, r2cf_11, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 11 -name r2cf_11 -include r2cf.h */ + +/* + * This function contains 60 FP additions, 50 FP multiplications, + * (or, 20 additions, 10 multiplications, 40 fused multiply/add), + * 28 stack variables, 10 constants, and 22 memory accesses + */ +#include "r2cf.h" + +static void r2cf_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP654860733, +0.654860733945285064056925072466293553183791199); + DK(KP142314838, +0.142314838273285140443792668616369668791051361); + DK(KP959492973, +0.959492973614497389890368057066327699062454848); + DK(KP415415013, +0.415415013001886425529274149229623203524004910); + DK(KP841253532, +0.841253532831181168861811648919367717513292498); + DK(KP989821441, +0.989821441880932732376092037776718787376519372); + DK(KP909631995, +0.909631995354518371411715383079028460060241051); + DK(KP281732556, +0.281732556841429697711417915346616899035777899); + DK(KP540640817, +0.540640817455597582107635954318691695431770608); + DK(KP755749574, +0.755749574354258283774035843972344420179717445); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { + E T1, T4, Tl, Tg, Th, Td, Ti, Ta, Tk, T7, Tj, Tb, Tc; + T1 = R0[0]; + { + E T2, T3, Te, Tf; + T2 = R0[WS(rs, 1)]; + T3 = R1[WS(rs, 4)]; + T4 = T2 + T3; + Tl = T3 - T2; + Te = R1[0]; + Tf = R0[WS(rs, 5)]; + Tg = Te + Tf; + Th = Tf - Te; + } + Tb = R1[WS(rs, 1)]; + Tc = R0[WS(rs, 4)]; + Td = Tb + Tc; + Ti = Tc - Tb; + { + E T8, T9, T5, T6; + T8 = R1[WS(rs, 2)]; + T9 = R0[WS(rs, 3)]; + Ta = T8 + T9; + Tk = T9 - T8; + T5 = R0[WS(rs, 2)]; + T6 = R1[WS(rs, 3)]; + T7 = T5 + T6; + Tj = T6 - T5; + } + Ci[WS(csi, 4)] = FMA(KP755749574, Th, KP540640817 * Ti) + FNMS(KP909631995, Tk, KP281732556 * Tj) - (KP989821441 * Tl); + Cr[WS(csr, 4)] = FMA(KP841253532, Td, T1) + FNMS(KP959492973, T7, KP415415013 * Ta) + FNMA(KP142314838, T4, KP654860733 * Tg); + Ci[WS(csi, 2)] = FMA(KP909631995, Th, KP755749574 * Tl) + FNMA(KP540640817, Tk, KP989821441 * Tj) - (KP281732556 * Ti); + Ci[WS(csi, 5)] = FMA(KP281732556, Th, KP755749574 * Ti) + FNMS(KP909631995, Tj, KP989821441 * Tk) - (KP540640817 * Tl); + Ci[WS(csi, 1)] = FMA(KP540640817, Th, KP909631995 * Tl) + FMA(KP989821441, Ti, KP755749574 * Tj) + (KP281732556 * Tk); + Ci[WS(csi, 3)] = FMA(KP989821441, Th, KP540640817 * Tj) + FNMS(KP909631995, Ti, KP755749574 * Tk) - (KP281732556 * Tl); + Cr[WS(csr, 3)] = FMA(KP415415013, Td, T1) + FNMS(KP654860733, Ta, KP841253532 * T7) + FNMA(KP959492973, T4, KP142314838 * Tg); + Cr[WS(csr, 1)] = FMA(KP841253532, Tg, T1) + FNMS(KP959492973, Ta, KP415415013 * T4) + FNMA(KP654860733, T7, KP142314838 * Td); + Cr[0] = T1 + Tg + T4 + Td + T7 + Ta; + Cr[WS(csr, 2)] = FMA(KP415415013, Tg, T1) + FNMS(KP142314838, T7, KP841253532 * Ta) + FNMA(KP959492973, Td, KP654860733 * T4); + Cr[WS(csr, 5)] = FMA(KP841253532, T4, T1) + FNMS(KP142314838, Ta, KP415415013 * T7) + FNMA(KP654860733, Td, KP959492973 * Tg); + } + } +} + +static const kr2c_desc desc = { 11, "r2cf_11", {20, 10, 40, 0}, &GENUS }; + +void X(codelet_r2cf_11) (planner *p) { + X(kr2c_register) (p, r2cf_11, &desc); +} + +#endif /* HAVE_FMA */