diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_9.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_9.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,230 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:40:14 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include r2cfII.h */
+
+/*
+ * This function contains 42 FP additions, 34 FP multiplications,
+ * (or, 12 additions, 4 multiplications, 30 fused multiply/add),
+ * 46 stack variables, 17 constants, and 18 memory accesses
+ */
+#include "r2cfII.h"
+
+static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DK(KP879385241, +0.879385241571816768108218554649462939872416269);
+     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DK(KP666666666, +0.666666666666666666666666666666666666666666667);
+     DK(KP673648177, +0.673648177666930348851716626769314796000375677);
+     DK(KP898197570, +0.898197570222573798468955502359086394667167570);
+     DK(KP826351822, +0.826351822333069651148283373230685203999624323);
+     DK(KP907603734, +0.907603734547952313649323976213898122064543220);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP420276625, +0.420276625461206169731530603237061658838781920);
+     DK(KP315207469, +0.315207469095904627298647952427796244129086440);
+     DK(KP203604859, +0.203604859554852403062088995281827210665664861);
+     DK(KP152703644, +0.152703644666139302296566746461370407999248646);
+     DK(KP726681596, +0.726681596905677465811651808188092531873167623);
+     DK(KP968908795, +0.968908795874236621082202410917456709164223497);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
+	       E To, T5, Tp, Ta, Ti, Tm, TB, Tq, Tt, Tf, Th;
+	       {
+		    E T1, T6, T4, Tb, Tk, T9, Tc, Td, Tl, Te;
+		    {
+			 E T2, T3, T7, T8;
+			 T1 = R0[0];
+			 T2 = R0[WS(rs, 3)];
+			 T3 = R1[WS(rs, 1)];
+			 T6 = R0[WS(rs, 1)];
+			 T7 = R0[WS(rs, 4)];
+			 T8 = R1[WS(rs, 2)];
+			 T4 = T2 - T3;
+			 To = T2 + T3;
+			 Tb = R0[WS(rs, 2)];
+			 Tk = T7 + T8;
+			 T9 = T7 - T8;
+			 Tc = R1[0];
+			 Td = R1[WS(rs, 3)];
+		    }
+		    T5 = T1 + T4;
+		    Tp = FNMS(KP500000000, T4, T1);
+		    Ta = T6 + T9;
+		    Tl = FNMS(KP500000000, T9, T6);
+		    Te = Tc + Td;
+		    Ti = Tc - Td;
+		    Tm = FMA(KP968908795, Tl, Tk);
+		    TB = FNMS(KP726681596, Tk, Tl);
+		    Tq = FNMS(KP152703644, Tk, Tl);
+		    Tt = FMA(KP203604859, Tl, Tk);
+		    Tf = Tb - Te;
+		    Th = FMA(KP500000000, Te, Tb);
+	       }
+	       {
+		    E Ts, Tr, TA, Tj, Tg;
+		    Ts = FMA(KP315207469, Ti, Th);
+		    Tr = FNMS(KP420276625, Th, Ti);
+		    TA = FMA(KP203604859, Th, Ti);
+		    Tj = FNMS(KP152703644, Ti, Th);
+		    Tg = Ta + Tf;
+		    Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
+		    {
+			 E Tu, Tx, TF, TC;
+			 Tu = FNMS(KP907603734, Tt, Ts);
+			 Tx = FNMS(KP826351822, Tr, Tq);
+			 TF = FMA(KP898197570, TB, TA);
+			 TC = FNMS(KP898197570, TB, TA);
+			 {
+			      E TE, Tn, Tv, Ty;
+			      TE = FNMS(KP673648177, Tm, Tj);
+			      Tn = FMA(KP673648177, Tm, Tj);
+			      Cr[WS(csr, 4)] = T5 + Tg;
+			      Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
+			      Tv = FNMS(KP666666666, Tu, Tr);
+			      Ty = FNMS(KP666666666, Tx, Tt);
+			      Cr[0] = FMA(KP852868531, TF, Tp);
+			      {
+				   E TG, TD, Tw, Tz;
+				   TG = FMA(KP500000000, TF, TE);
+				   Ci[0] = -(KP984807753 * (FMA(KP879385241, To, Tn)));
+				   TD = FNMS(KP666666666, Tn, TC);
+				   Tw = FMA(KP826351822, Tv, Tq);
+				   Tz = FMA(KP907603734, Ty, Ts);
+				   Cr[WS(csr, 3)] = FNMS(KP852868531, TG, Tp);
+				   Ci[WS(csi, 3)] = -(KP866025403 * (FMA(KP852868531, TD, To)));
+				   Cr[WS(csr, 2)] = FNMS(KP852868531, Tw, Tp);
+				   Ci[WS(csi, 2)] = KP866025403 * (FNMS(KP939692620, Tz, To));
+			      }
+			 }
+		    }
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 9, "r2cfII_9", {12, 4, 30, 0}, &GENUS };
+
+void X(codelet_r2cfII_9) (planner *p) {
+     X(kr2c_register) (p, r2cfII_9, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cfII_9 -dft-II -include r2cfII.h */
+
+/*
+ * This function contains 42 FP additions, 30 FP multiplications,
+ * (or, 25 additions, 13 multiplications, 17 fused multiply/add),
+ * 39 stack variables, 14 constants, and 18 memory accesses
+ */
+#include "r2cfII.h"
+
+static void r2cfII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP663413948, +0.663413948168938396205421319635891297216863310);
+     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
+     DK(KP556670399, +0.556670399226419366452912952047023132968291906);
+     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
+     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
+     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DK(KP150383733, +0.150383733180435296639271897612501926072238258);
+     DK(KP813797681, +0.813797681349373692844693217248393223289101568);
+     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
+     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DK(KP296198132, +0.296198132726023843175338011893050938967728390);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
+	       E T1, T4, To, Ta, Tl, Tk, Tf, Ti, Th, T2, T3, T5, Tg;
+	       T1 = R0[0];
+	       T2 = R1[WS(rs, 1)];
+	       T3 = R0[WS(rs, 3)];
+	       T4 = T2 - T3;
+	       To = T2 + T3;
+	       {
+		    E T6, T7, T8, T9;
+		    T6 = R0[WS(rs, 1)];
+		    T7 = R1[WS(rs, 2)];
+		    T8 = R0[WS(rs, 4)];
+		    T9 = T7 - T8;
+		    Ta = T6 - T9;
+		    Tl = T7 + T8;
+		    Tk = FMA(KP500000000, T9, T6);
+	       }
+	       {
+		    E Tb, Tc, Td, Te;
+		    Tb = R0[WS(rs, 2)];
+		    Tc = R1[0];
+		    Td = R1[WS(rs, 3)];
+		    Te = Tc + Td;
+		    Tf = Tb - Te;
+		    Ti = FMA(KP500000000, Te, Tb);
+		    Th = Tc - Td;
+	       }
+	       Ci[WS(csi, 1)] = KP866025403 * (Tf - Ta);
+	       T5 = T1 - T4;
+	       Tg = Ta + Tf;
+	       Cr[WS(csr, 1)] = FNMS(KP500000000, Tg, T5);
+	       Cr[WS(csr, 4)] = T5 + Tg;
+	       {
+		    E Tr, Tt, Tw, Tv, Tu, Tp, Tq, Ts, Tj, Tm, Tn;
+		    Tr = FMA(KP500000000, T4, T1);
+		    Tt = FMA(KP296198132, Th, KP939692620 * Ti);
+		    Tw = FNMS(KP813797681, Th, KP342020143 * Ti);
+		    Tv = FNMS(KP984807753, Tk, KP150383733 * Tl);
+		    Tu = FMA(KP173648177, Tk, KP852868531 * Tl);
+		    Tp = FNMS(KP556670399, Tl, KP766044443 * Tk);
+		    Tq = FMA(KP852868531, Th, KP173648177 * Ti);
+		    Ts = Tp + Tq;
+		    Tj = FNMS(KP984807753, Ti, KP150383733 * Th);
+		    Tm = FMA(KP642787609, Tk, KP663413948 * Tl);
+		    Tn = Tj - Tm;
+		    Ci[0] = FNMS(KP866025403, To, Tn);
+		    Cr[0] = Tr + Ts;
+		    Ci[WS(csi, 3)] = FNMS(KP500000000, Tn, KP866025403 * ((Tp - Tq) - To));
+		    Cr[WS(csr, 3)] = FMA(KP866025403, Tm + Tj, Tr) - (KP500000000 * Ts);
+		    Ci[WS(csi, 2)] = FMA(KP866025403, To - (Tu + Tt), KP500000000 * (Tw - Tv));
+		    Cr[WS(csr, 2)] = FMA(KP500000000, Tt - Tu, Tr) + (KP866025403 * (Tv + Tw));
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 9, "r2cfII_9", {25, 13, 17, 0}, &GENUS };
+
+void X(codelet_r2cfII_9) (planner *p) {
+     X(kr2c_register) (p, r2cfII_9, &desc);
+}
+
+#endif				/* HAVE_FMA */