Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_20.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cfII_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,396 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:40:23 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */ + +/* + * This function contains 102 FP additions, 63 FP multiplications, + * (or, 39 additions, 0 multiplications, 63 fused multiply/add), + * 67 stack variables, 10 constants, and 40 memory accesses + */ +#include "r2cfII.h" + +static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP690983005, +0.690983005625052575897706582817180941139845410); + DK(KP552786404, +0.552786404500042060718165266253744752911876328); + DK(KP447213595, +0.447213595499957939281834733746255247088123672); + DK(KP809016994, +0.809016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP381966011, +0.381966011250105151795413165634361882279690820); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { + E Tv, TK, TN, Th, T1l, T1n, Ts, TH; + { + E Ti, T1d, T1f, T1e, T1g, T1p, TS, Tg, To, T8, T7, T19, T1r, T1k, Tx; + E Tp, TX, Ty, TF, Tr, TV, Tz, TA, TI; + { + E Ta, Tb, Td, Te; + Ti = R1[WS(rs, 2)]; + T1d = R0[WS(rs, 5)]; + Ta = R0[WS(rs, 9)]; + Tb = R0[WS(rs, 1)]; + Td = R0[WS(rs, 3)]; + Te = R0[WS(rs, 7)]; + { + E T1, T2, T5, T3, T4, T1i, Tc, Tf; + T1 = R0[0]; + T1f = Ta + Tb; + Tc = Ta - Tb; + T1e = Td + Te; + Tf = Td - Te; + T2 = R0[WS(rs, 4)]; + T5 = R0[WS(rs, 6)]; + T1g = FMA(KP381966011, T1f, T1e); + T1p = FMA(KP381966011, T1e, T1f); + TS = FMA(KP618033988, Tc, Tf); + Tg = FNMS(KP618033988, Tf, Tc); + T3 = R0[WS(rs, 8)]; + T4 = R0[WS(rs, 2)]; + T1i = T2 + T5; + { + E Tj, Tu, Tm, Tt, Tn, Tq, TU; + Tj = R1[WS(rs, 8)]; + To = R1[WS(rs, 6)]; + { + E T6, T1j, Tk, Tl; + T6 = T2 + T3 - T4 - T5; + T8 = (T3 + T5 - T2) - T4; + T1j = T3 + T4; + Tk = R1[0]; + Tl = R1[WS(rs, 4)]; + T7 = FNMS(KP250000000, T6, T1); + T19 = T1 + T6; + T1r = FNMS(KP618033988, T1i, T1j); + T1k = FMA(KP618033988, T1j, T1i); + Tu = Tk - Tl; + Tm = Tk + Tl; + } + Tt = To + Tj; + Tx = R1[WS(rs, 7)]; + Tn = Tj - Tm; + Tp = Tj + Tm; + Tv = FNMS(KP618033988, Tu, Tt); + TX = FMA(KP618033988, Tt, Tu); + Tq = FMA(KP809016994, Tp, To); + TU = FMA(KP447213595, Tp, Tn); + Ty = R1[WS(rs, 1)]; + TF = R1[WS(rs, 3)]; + Tr = FNMS(KP552786404, Tq, Tn); + TV = FNMS(KP690983005, TU, To); + Tz = R1[WS(rs, 5)]; + TA = R1[WS(rs, 9)]; + TI = TF + Ty; + } + } + } + { + E T1w, TJ, TB, T1a; + T1w = T1f + T1d - T1e; + TJ = Tz - TA; + TB = Tz + TA; + T1a = Ti + To - Tp; + { + E T9, T12, TT, T15, TG, TD, T1s, T1u, TW, T11, T10, T1h; + { + E TE, TC, TR, T1b; + T9 = FNMS(KP559016994, T8, T7); + TR = FMA(KP559016994, T8, T7); + TK = FMA(KP618033988, TJ, TI); + T12 = FNMS(KP618033988, TI, TJ); + TE = Ty - TB; + TC = Ty + TB; + TT = FMA(KP951056516, TS, TR); + T15 = FNMS(KP951056516, TS, TR); + TG = FNMS(KP552786404, TF, TE); + T1b = TC - TF - Tx; + { + E TZ, T1q, T1c, T1x; + TZ = FMA(KP447213595, TC, TE); + TD = FMA(KP250000000, TC, Tx); + T1q = FNMS(KP809016994, T1p, T1d); + T1c = T1a + T1b; + T1x = T1a - T1b; + T10 = FNMS(KP690983005, TZ, TF); + T1s = FNMS(KP951056516, T1r, T1q); + T1u = FMA(KP951056516, T1r, T1q); + Ci[WS(csi, 7)] = FMA(KP707106781, T1x, T1w); + Ci[WS(csi, 2)] = FMS(KP707106781, T1x, T1w); + Cr[WS(csr, 7)] = FMA(KP707106781, T1c, T19); + Cr[WS(csr, 2)] = FNMS(KP707106781, T1c, T19); + } + } + TW = FNMS(KP809016994, TV, Ti); + T11 = FNMS(KP809016994, T10, Tx); + T1h = FMA(KP809016994, T1g, T1d); + { + E T17, TY, T16, T13; + T17 = FNMS(KP951056516, TX, TW); + TY = FMA(KP951056516, TX, TW); + T16 = FMA(KP951056516, T12, T11); + T13 = FNMS(KP951056516, T12, T11); + TN = FMA(KP951056516, Tg, T9); + Th = FNMS(KP951056516, Tg, T9); + { + E T18, T1v, T1t, T14; + T18 = T16 - T17; + T1v = T17 + T16; + T1t = TY + T13; + T14 = TY - T13; + Cr[WS(csr, 1)] = FMA(KP707106781, T18, T15); + Cr[WS(csr, 8)] = FNMS(KP707106781, T18, T15); + Ci[WS(csi, 3)] = FMA(KP707106781, T1v, T1u); + Ci[WS(csi, 6)] = FMS(KP707106781, T1v, T1u); + Ci[WS(csi, 1)] = FNMS(KP707106781, T1t, T1s); + Ci[WS(csi, 8)] = -(FMA(KP707106781, T1t, T1s)); + Cr[WS(csr, 3)] = FMA(KP707106781, T14, TT); + Cr[WS(csr, 6)] = FNMS(KP707106781, T14, TT); + T1l = FMA(KP951056516, T1k, T1h); + T1n = FNMS(KP951056516, T1k, T1h); + } + } + Ts = FNMS(KP559016994, Tr, Ti); + TH = FNMS(KP559016994, TG, TD); + } + } + } + { + E TO, Tw, TP, TL; + TO = FMA(KP951056516, Tv, Ts); + Tw = FNMS(KP951056516, Tv, Ts); + TP = FMA(KP951056516, TK, TH); + TL = FNMS(KP951056516, TK, TH); + { + E TQ, T1m, T1o, TM; + TQ = TO - TP; + T1m = TO + TP; + T1o = Tw + TL; + TM = Tw - TL; + Cr[WS(csr, 4)] = FMA(KP707106781, TQ, TN); + Cr[WS(csr, 5)] = FNMS(KP707106781, TQ, TN); + Ci[WS(csi, 9)] = FNMS(KP707106781, T1m, T1l); + Ci[0] = -(FMA(KP707106781, T1m, T1l)); + Ci[WS(csi, 5)] = FNMS(KP707106781, T1o, T1n); + Ci[WS(csi, 4)] = -(FMA(KP707106781, T1o, T1n)); + Cr[0] = FMA(KP707106781, TM, Th); + Cr[WS(csr, 9)] = FNMS(KP707106781, TM, Th); + } + } + } + } +} + +static const kr2c_desc desc = { 20, "r2cfII_20", {39, 0, 63, 0}, &GENUS }; + +void X(codelet_r2cfII_20) (planner *p) { + X(kr2c_register) (p, r2cfII_20, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cfII_20 -dft-II -include r2cfII.h */ + +/* + * This function contains 102 FP additions, 34 FP multiplications, + * (or, 86 additions, 18 multiplications, 16 fused multiply/add), + * 60 stack variables, 13 constants, and 40 memory accesses + */ +#include "r2cfII.h" + +static void r2cfII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP572061402, +0.572061402817684297600072783580302076536153377); + DK(KP218508012, +0.218508012224410535399650602527877556893735408); + DK(KP309016994, +0.309016994374947424102293417182819058860154590); + DK(KP809016994, +0.809016994374947424102293417182819058860154590); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP176776695, +0.176776695296636881100211090526212259821208984); + DK(KP395284707, +0.395284707521047416499861693054089816714944392); + DK(KP672498511, +0.672498511963957326960058968885748755876783111); + DK(KP415626937, +0.415626937777453428589967464113135184222253485); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { + E T8, TD, Tm, TN, T9, TC, TY, TE, Te, TF, Tl, TK, T12, TL, Tk; + E TM, T1, T6, Tq, T1l, T1c, Tp, T1f, T1e, T1d, Ty, TW, T1g, T1m, Tx; + E Tu; + T8 = R1[WS(rs, 2)]; + TD = KP707106781 * T8; + Tm = R1[WS(rs, 7)]; + TN = KP707106781 * Tm; + { + E Ta, TA, Td, TB, Tb, Tc; + T9 = R1[WS(rs, 6)]; + Ta = R1[WS(rs, 8)]; + TA = T9 + Ta; + Tb = R1[0]; + Tc = R1[WS(rs, 4)]; + Td = Tb + Tc; + TB = Tb - Tc; + TC = FMA(KP415626937, TA, KP672498511 * TB); + TY = FNMS(KP415626937, TB, KP672498511 * TA); + TE = KP395284707 * (Ta - Td); + Te = Ta + Td; + TF = KP176776695 * Te; + } + { + E Tg, TJ, Tj, TI, Th, Ti; + Tg = R1[WS(rs, 1)]; + Tl = R1[WS(rs, 3)]; + TJ = Tg + Tl; + Th = R1[WS(rs, 5)]; + Ti = R1[WS(rs, 9)]; + Tj = Th + Ti; + TI = Th - Ti; + TK = FNMS(KP415626937, TJ, KP672498511 * TI); + T12 = FMA(KP415626937, TI, KP672498511 * TJ); + TL = KP395284707 * (Tg - Tj); + Tk = Tg + Tj; + TM = KP176776695 * Tk; + } + { + E T2, T5, T3, T4, T1a, T1b; + T1 = R0[0]; + T2 = R0[WS(rs, 6)]; + T5 = R0[WS(rs, 8)]; + T3 = R0[WS(rs, 2)]; + T4 = R0[WS(rs, 4)]; + T1a = T4 + T2; + T1b = T5 + T3; + T6 = T2 + T3 - (T4 + T5); + Tq = FMA(KP250000000, T6, T1); + T1l = FNMS(KP951056516, T1b, KP587785252 * T1a); + T1c = FMA(KP951056516, T1a, KP587785252 * T1b); + Tp = KP559016994 * (T5 + T2 - (T4 + T3)); + } + T1f = R0[WS(rs, 5)]; + { + E Tv, Tw, Ts, Tt; + Tv = R0[WS(rs, 9)]; + Tw = R0[WS(rs, 1)]; + Tx = Tv - Tw; + T1e = Tv + Tw; + Ts = R0[WS(rs, 3)]; + Tt = R0[WS(rs, 7)]; + Tu = Ts - Tt; + T1d = Ts + Tt; + } + Ty = FMA(KP951056516, Tu, KP587785252 * Tx); + TW = FNMS(KP951056516, Tx, KP587785252 * Tu); + T1g = FMA(KP809016994, T1d, KP309016994 * T1e) + T1f; + T1m = FNMS(KP809016994, T1e, T1f) - (KP309016994 * T1d); + { + E T7, T1r, To, T1q, Tf, Tn; + T7 = T1 - T6; + T1r = T1e + T1f - T1d; + Tf = T8 + (T9 - Te); + Tn = (Tk - Tl) - Tm; + To = KP707106781 * (Tf + Tn); + T1q = KP707106781 * (Tf - Tn); + Cr[WS(csr, 2)] = T7 - To; + Ci[WS(csi, 2)] = T1q - T1r; + Cr[WS(csr, 7)] = T7 + To; + Ci[WS(csi, 7)] = T1q + T1r; + } + { + E T1h, T1j, TX, T15, T10, T16, T13, T17, TV, TZ, T11; + T1h = T1c - T1g; + T1j = T1c + T1g; + TV = Tq - Tp; + TX = TV - TW; + T15 = TV + TW; + TZ = FMA(KP218508012, T9, TD) + TF - TE; + T10 = TY + TZ; + T16 = TZ - TY; + T11 = FNMS(KP218508012, Tl, TL) - (TM + TN); + T13 = T11 - T12; + T17 = T11 + T12; + { + E T14, T19, T18, T1i; + T14 = T10 + T13; + Cr[WS(csr, 5)] = TX - T14; + Cr[WS(csr, 4)] = TX + T14; + T19 = T17 - T16; + Ci[WS(csi, 5)] = T19 - T1h; + Ci[WS(csi, 4)] = T19 + T1h; + T18 = T16 + T17; + Cr[WS(csr, 9)] = T15 - T18; + Cr[0] = T15 + T18; + T1i = T13 - T10; + Ci[0] = T1i - T1j; + Ci[WS(csi, 9)] = T1i + T1j; + } + } + { + E T1n, T1p, Tz, TR, TH, TS, TP, TT, Tr, TG, TO; + T1n = T1l + T1m; + T1p = T1m - T1l; + Tr = Tp + Tq; + Tz = Tr + Ty; + TR = Tr - Ty; + TG = TD + TE + FNMS(KP572061402, T9, TF); + TH = TC + TG; + TS = TC - TG; + TO = TL + TM + FNMS(KP572061402, Tl, TN); + TP = TK - TO; + TT = TK + TO; + { + E TQ, T1o, TU, T1k; + TQ = TH + TP; + Cr[WS(csr, 6)] = Tz - TQ; + Cr[WS(csr, 3)] = Tz + TQ; + T1o = TT - TS; + Ci[WS(csi, 6)] = T1o - T1p; + Ci[WS(csi, 3)] = T1o + T1p; + TU = TS + TT; + Cr[WS(csr, 8)] = TR - TU; + Cr[WS(csr, 1)] = TR + TU; + T1k = TP - TH; + Ci[WS(csi, 8)] = T1k - T1n; + Ci[WS(csi, 1)] = T1k + T1n; + } + } + } + } +} + +static const kr2c_desc desc = { 20, "r2cfII_20", {86, 18, 16, 0}, &GENUS }; + +void X(codelet_r2cfII_20) (planner *p) { + X(kr2c_register) (p, r2cfII_20, &desc); +} + +#endif /* HAVE_FMA */