Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_20.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1143 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:40:48 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h */ + +/* + * This function contains 286 FP additions, 188 FP multiplications, + * (or, 176 additions, 78 multiplications, 110 fused multiply/add), + * 174 stack variables, 5 constants, and 80 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { + E T4X, T5i, T5k, T5e, T5c, T5d, T5j, T5f; + { + E T2E, T4W, T3v, T4k, T2M, T3w, T4V, T4j, T2p, T2T, T5a, T5A, T3D, T3o, T4b; + E T4B, T1Y, T2S, T5z, T57, T3h, T3C, T4A, T44, TH, T2P, T50, T5x, T3z, T32; + E T3P, T4D, T3V, T3U, T5w, T53, T2Q, T1o, T3A, T39; + { + E T1V, T9, T2w, Tu, T1, T6, T1R, T1U, T1T, T2Y, T5, T40, T2F, T10, T2C; + E TE, TX, T2m, T1y, T4g, TS, T33, TW, Tw, TB, T2y, T2B, TA, T3L, T2A; + E T3t, T1q, T1v, T2i, T2l, T2k, T3d, T1u, T48, Tm, Tr, T2s, T2v, T2u, T3J; + E Tq, T3r, T20, T1g, T23, T1l, T1h, T3S, T3k, T21, T2H, TL, T2K, TQ, TM; + E T35, T4h, T2I, T2f, T2g, T1I, T1D, T2c, T46, T2e, T3b, T1E, T28, T16, T29; + E T1b, T25, T3i, T27, T3Q, T17, T1O, T1P, Tj, T1M, Te, T1L, Tb, T3Y, TV; + E T1d, T1Z; + { + E T1S, T4, T7, T8; + T7 = Rp[WS(rs, 9)]; + T8 = Rm[WS(rs, 9)]; + { + E Ts, Tt, T2, T3; + Ts = Rp[WS(rs, 2)]; + Tt = Rm[WS(rs, 2)]; + T2 = Ip[WS(rs, 9)]; + T1V = T7 + T8; + T9 = T7 - T8; + T2w = Ts - Tt; + Tu = Ts + Tt; + T3 = Im[WS(rs, 9)]; + T1 = W[36]; + T6 = W[37]; + T1R = W[34]; + T1S = T2 - T3; + T4 = T2 + T3; + T1U = W[35]; + } + { + E TY, TZ, TC, TD; + TY = Ip[0]; + T1T = T1R * T1S; + T2Y = T6 * T4; + T5 = T1 * T4; + T40 = T1U * T1S; + TZ = Im[0]; + TC = Rp[WS(rs, 7)]; + TD = Rm[WS(rs, 7)]; + { + E T1w, T1x, TT, TU; + T1w = Rp[WS(rs, 1)]; + T2F = TY - TZ; + T10 = TY + TZ; + T2C = TC - TD; + TE = TC + TD; + T1x = Rm[WS(rs, 1)]; + TT = Rm[0]; + TU = Rp[0]; + TX = W[0]; + T2m = T1w + T1x; + T1y = T1w - T1x; + T4g = TU + TT; + TV = TT - TU; + TS = W[1]; + } + } + } + { + E T2j, T1t, T1r, T1s; + { + E Tx, Ty, T2z, Tz; + Tx = Ip[WS(rs, 7)]; + Ty = Im[WS(rs, 7)]; + T33 = TX * TV; + TW = TS * TV; + Tw = W[26]; + T2z = Tx + Ty; + Tz = Tx - Ty; + TB = W[27]; + T2y = W[28]; + T2B = W[29]; + TA = Tw * Tz; + T3L = TB * Tz; + T2A = T2y * T2z; + T3t = T2B * T2z; + } + T1r = Ip[WS(rs, 1)]; + T1s = Im[WS(rs, 1)]; + T1q = W[4]; + T1v = W[5]; + T2i = W[2]; + T2j = T1r - T1s; + T1t = T1r + T1s; + T2l = W[3]; + { + E T2t, Tp, Tn, To; + Tn = Ip[WS(rs, 2)]; + T2k = T2i * T2j; + T3d = T1v * T1t; + T1u = T1q * T1t; + T48 = T2l * T2j; + To = Im[WS(rs, 2)]; + Tm = W[6]; + Tr = W[7]; + T2s = W[8]; + T2t = Tn + To; + Tp = Tn - To; + T2v = W[9]; + { + E T1e, T1f, T1j, T1k; + T1e = Ip[WS(rs, 3)]; + T2u = T2s * T2t; + T3J = Tr * Tp; + Tq = Tm * Tp; + T3r = T2v * T2t; + T1f = Im[WS(rs, 3)]; + T1j = Rp[WS(rs, 3)]; + T1k = Rm[WS(rs, 3)]; + T1d = W[10]; + T20 = T1e + T1f; + T1g = T1e - T1f; + T23 = T1j - T1k; + T1l = T1j + T1k; + T1Z = W[12]; + T1h = T1d * T1g; + } + } + } + { + E T2d, T1A, TI, T2G, T26, T13; + { + E TJ, TK, TO, TP; + TJ = Ip[WS(rs, 5)]; + T3S = T1d * T1l; + T3k = T1Z * T23; + T21 = T1Z * T20; + TK = Im[WS(rs, 5)]; + TO = Rp[WS(rs, 5)]; + TP = Rm[WS(rs, 5)]; + TI = W[20]; + T2H = TJ - TK; + TL = TJ + TK; + T2K = TO + TP; + TQ = TO - TP; + T2G = W[18]; + TM = TI * TL; + } + { + E T1G, T1H, T1B, T1C; + T1G = Rm[WS(rs, 6)]; + T35 = TI * TQ; + T4h = T2G * T2K; + T2I = T2G * T2H; + T1H = Rp[WS(rs, 6)]; + T1B = Ip[WS(rs, 6)]; + T1C = Im[WS(rs, 6)]; + T2f = W[23]; + T2g = T1H + T1G; + T1I = T1G - T1H; + T2d = T1B - T1C; + T1D = T1B + T1C; + T2c = W[22]; + T1A = W[24]; + T46 = T2f * T2d; + } + { + E T14, T15, T19, T1a; + T14 = Ip[WS(rs, 8)]; + T2e = T2c * T2d; + T3b = T1A * T1I; + T1E = T1A * T1D; + T15 = Im[WS(rs, 8)]; + T19 = Rp[WS(rs, 8)]; + T1a = Rm[WS(rs, 8)]; + T28 = W[32]; + T16 = T14 - T15; + T29 = T14 + T15; + T1b = T19 + T1a; + T26 = T1a - T19; + T25 = W[33]; + T13 = W[30]; + T3i = T28 * T26; + } + { + E Th, Ti, Tc, Td; + Th = Rm[WS(rs, 4)]; + T27 = T25 * T26; + T3Q = T13 * T1b; + T17 = T13 * T16; + Ti = Rp[WS(rs, 4)]; + Tc = Ip[WS(rs, 4)]; + Td = Im[WS(rs, 4)]; + T1O = W[15]; + T1P = Ti + Th; + Tj = Th - Ti; + T1M = Tc - Td; + Te = Tc + Td; + T1L = W[14]; + Tb = W[16]; + T3Y = T1O * T1M; + } + } + { + E T1N, T2W, Tf, T2L, T4i; + { + E T2x, T2D, T3s, T3u, T2J; + T2x = FNMS(T2v, T2w, T2u); + T1N = T1L * T1M; + T2W = Tb * Tj; + Tf = Tb * Te; + T2D = FNMS(T2B, T2C, T2A); + T3s = FMA(T2s, T2w, T3r); + T3u = FMA(T2y, T2C, T3t); + T2J = W[19]; + T2E = T2x - T2D; + T4W = T2x + T2D; + T3v = T3s + T3u; + T4k = T3u - T3s; + T2L = FNMS(T2J, T2K, T2I); + T4i = FMA(T2J, T2H, T4h); + } + { + E T42, T43, T45, T4a, T3O, T3N; + { + E T2a, T3j, T47, T3l, T24, T2o, T3n, T49, T22, T2h, T2n; + T2a = FMA(T28, T29, T27); + T3j = FNMS(T25, T29, T3i); + T2M = T2F - T2L; + T3w = T2L + T2F; + T4V = T4g + T4i; + T4j = T4g - T4i; + T22 = W[13]; + T2h = FNMS(T2f, T2g, T2e); + T2n = FNMS(T2l, T2m, T2k); + T47 = FMA(T2c, T2g, T46); + T3l = FMA(T22, T20, T3k); + T24 = FNMS(T22, T23, T21); + T2o = T2h - T2n; + T3n = T2h + T2n; + T49 = FMA(T2i, T2m, T48); + { + E T2b, T58, T3m, T59; + T2b = T24 - T2a; + T58 = T2a + T24; + T3m = T3j - T3l; + T45 = T3j + T3l; + T4a = T47 - T49; + T59 = T47 + T49; + T2p = T2b - T2o; + T2T = T2b + T2o; + T5a = T58 + T59; + T5A = T59 - T58; + T3D = T3m + T3n; + T3o = T3m - T3n; + } + } + { + E T1z, T3e, T1Q, T3c, T1J, T1W, T3Z, T41, T1F; + T1z = FNMS(T1v, T1y, T1u); + T3e = FMA(T1q, T1y, T3d); + T1F = W[25]; + T4b = T45 + T4a; + T4B = T4a - T45; + T1Q = FNMS(T1O, T1P, T1N); + T3c = FNMS(T1F, T1D, T3b); + T1J = FMA(T1F, T1I, T1E); + T1W = FNMS(T1U, T1V, T1T); + T3Z = FMA(T1L, T1P, T3Y); + T41 = FMA(T1R, T1V, T40); + { + E T56, T3g, T55, T1K, T1X, T3f; + T56 = T1J + T1z; + T1K = T1z - T1J; + T3g = T1Q + T1W; + T1X = T1Q - T1W; + T55 = T3Z + T41; + T42 = T3Z - T41; + T1Y = T1K - T1X; + T2S = T1X + T1K; + T43 = T3c + T3e; + T3f = T3c - T3e; + T5z = T55 - T56; + T57 = T55 + T56; + T3h = T3f - T3g; + T3C = T3g + T3f; + } + } + { + E Ta, T2Z, T3K, T2X, Tk, TG, T31, T3M, Tg, Tv, TF; + Ta = FNMS(T6, T9, T5); + T4A = T42 - T43; + T44 = T42 + T43; + T2Z = FMA(T1, T9, T2Y); + Tg = W[17]; + Tv = FNMS(Tr, Tu, Tq); + TF = FNMS(TB, TE, TA); + T3K = FMA(Tm, Tu, T3J); + T2X = FNMS(Tg, Te, T2W); + Tk = FMA(Tg, Tj, Tf); + TG = Tv - TF; + T31 = Tv + TF; + T3M = FMA(Tw, TE, T3L); + { + E Tl, T4Z, T30, T4Y; + Tl = Ta - Tk; + T4Z = Tk + Ta; + T30 = T2X - T2Z; + T3O = T2X + T2Z; + T3N = T3K - T3M; + T4Y = T3K + T3M; + TH = Tl - TG; + T2P = TG + Tl; + T50 = T4Y + T4Z; + T5x = T4Y - T4Z; + T3z = T31 + T30; + T32 = T30 - T31; + } + } + { + E T11, T34, T36, TR, T1i, T3R, T1c, TN, T18; + T11 = FMA(TX, T10, TW); + T34 = FNMS(TS, T10, T33); + TN = W[21]; + T3P = T3N + T3O; + T4D = T3N - T3O; + T18 = W[31]; + T36 = FMA(TN, TL, T35); + TR = FNMS(TN, TQ, TM); + T1i = W[11]; + T3R = FMA(T18, T16, T3Q); + T1c = FNMS(T18, T1b, T17); + { + E T52, T12, T3T, T1m; + T52 = TR + T11; + T12 = TR - T11; + T3T = FMA(T1i, T1g, T3S); + T1m = FNMS(T1i, T1l, T1h); + { + E T37, T51, T38, T1n; + T3V = T36 + T34; + T37 = T34 - T36; + T51 = T3R + T3T; + T3U = T3R - T3T; + T38 = T1c + T1m; + T1n = T1c - T1m; + T5w = T51 - T52; + T53 = T51 + T52; + T2Q = T1n + T12; + T1o = T12 - T1n; + T3A = T38 + T37; + T39 = T37 - T38; + } + } + } + } + } + } + { + E T4l, T4m, T4n, T4w, T4u; + { + E T4L, T2O, T3W, T4K, T4I, T4G, T4S, T4U, T4J, T4z, T4H; + { + E T4C, T2N, T4R, T1p, T4E, T2q, T4Q; + T4L = T4A + T4B; + T4C = T4A - T4B; + T2N = T2E + T2M; + T2O = T2M - T2E; + T4R = T1o - TH; + T1p = TH + T1o; + T4E = T3U - T3V; + T3W = T3U + T3V; + T2q = T1Y + T2p; + T4Q = T2p - T1Y; + { + E T4y, T4x, T4F, T2r; + T4F = T4D - T4E; + T4K = T4D + T4E; + T4y = T1p - T2q; + T2r = T1p + T2q; + T4I = FMA(KP618033988, T4C, T4F); + T4G = FNMS(KP618033988, T4F, T4C); + T4S = FNMS(KP618033988, T4R, T4Q); + T4U = FMA(KP618033988, T4Q, T4R); + Im[WS(rs, 4)] = KP500000000 * (T2r - T2N); + T4x = FMA(KP250000000, T2r, T2N); + T4J = T4j - T4k; + T4l = T4j + T4k; + T4z = FMA(KP559016994, T4y, T4x); + T4H = FNMS(KP559016994, T4y, T4x); + } + } + { + E T2R, T4s, T4d, T4f, T4t, T2U, T4P, T4T; + { + E T3X, T4O, T4M, T4c, T4N; + T4m = T3P + T3W; + T3X = T3P - T3W; + Ip[WS(rs, 7)] = KP500000000 * (FMA(KP951056516, T4G, T4z)); + Ip[WS(rs, 3)] = KP500000000 * (FNMS(KP951056516, T4G, T4z)); + Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP951056516, T4I, T4H))); + Im[0] = -(KP500000000 * (FMA(KP951056516, T4I, T4H))); + T4O = T4K - T4L; + T4M = T4K + T4L; + T4c = T44 - T4b; + T4n = T44 + T4b; + T2R = T2P + T2Q; + T4s = T2P - T2Q; + Rm[WS(rs, 4)] = KP500000000 * (T4J + T4M); + T4N = FNMS(KP250000000, T4M, T4J); + T4d = FMA(KP618033988, T4c, T3X); + T4f = FNMS(KP618033988, T3X, T4c); + T4t = T2S - T2T; + T2U = T2S + T2T; + T4P = FNMS(KP559016994, T4O, T4N); + T4T = FMA(KP559016994, T4O, T4N); + } + { + E T3H, T3G, T2V, T3I, T4e; + T2V = T2R + T2U; + T3H = T2R - T2U; + Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T4S, T4P)); + Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T4S, T4P)); + Rm[0] = KP500000000 * (FNMS(KP951056516, T4U, T4T)); + Rm[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T4U, T4T)); + Ip[WS(rs, 5)] = KP500000000 * (T2O + T2V); + T3G = FNMS(KP250000000, T2V, T2O); + T3I = FMA(KP559016994, T3H, T3G); + T4e = FNMS(KP559016994, T3H, T3G); + T4w = FNMS(KP618033988, T4s, T4t); + T4u = FMA(KP618033988, T4t, T4s); + Ip[WS(rs, 9)] = KP500000000 * (FMA(KP951056516, T4d, T3I)); + Ip[WS(rs, 1)] = KP500000000 * (FNMS(KP951056516, T4d, T3I)); + Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP951056516, T4f, T4e))); + Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP951056516, T4f, T4e))); + } + } + } + { + E T3y, T5O, T5Q, T5F, T5K, T5I; + { + E T5G, T5H, T3x, T4q, T5E, T5C, T3a, T5N, T4p, T5M, T3p, T5y, T5B, T4o; + T5G = T5x + T5w; + T5y = T5w - T5x; + T5B = T5z - T5A; + T5H = T5z + T5A; + T3y = T3w - T3v; + T3x = T3v + T3w; + T4q = T4m - T4n; + T4o = T4m + T4n; + T5E = FMA(KP618033988, T5y, T5B); + T5C = FNMS(KP618033988, T5B, T5y); + T3a = T32 + T39; + T5N = T39 - T32; + Rp[WS(rs, 5)] = KP500000000 * (T4l + T4o); + T4p = FNMS(KP250000000, T4o, T4l); + T5M = T3o - T3h; + T3p = T3h + T3o; + { + E T5u, T5t, T4r, T4v, T3q, T5D, T5v; + T4r = FMA(KP559016994, T4q, T4p); + T4v = FNMS(KP559016994, T4q, T4p); + T5u = T3p - T3a; + T3q = T3a + T3p; + Rp[WS(rs, 9)] = KP500000000 * (FNMS(KP951056516, T4u, T4r)); + Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T4u, T4r)); + Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T4w, T4v)); + Rm[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T4w, T4v)); + Im[WS(rs, 9)] = KP500000000 * (T3q - T3x); + T5t = FMA(KP250000000, T3q, T3x); + T5O = FNMS(KP618033988, T5N, T5M); + T5Q = FMA(KP618033988, T5M, T5N); + T5F = T4V - T4W; + T4X = T4V + T4W; + T5D = FNMS(KP559016994, T5u, T5t); + T5v = FMA(KP559016994, T5u, T5t); + Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP951056516, T5C, T5v))); + Ip[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5C, T5v)); + Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T5E, T5D))); + Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T5E, T5D)); + T5K = T5G - T5H; + T5I = T5G + T5H; + } + } + { + E T54, T5b, T5s, T5q, T5g, T5h, T3F, T5m, T5o, T5p, T5J, T5l, T5r, T5n; + T54 = T50 + T53; + T5o = T50 - T53; + T5p = T5a - T57; + T5b = T57 + T5a; + Rm[WS(rs, 9)] = KP500000000 * (T5F + T5I); + T5J = FNMS(KP250000000, T5I, T5F); + T5s = FMA(KP618033988, T5o, T5p); + T5q = FNMS(KP618033988, T5p, T5o); + { + E T5L, T5P, T3B, T3E; + T5L = FNMS(KP559016994, T5K, T5J); + T5P = FMA(KP559016994, T5K, T5J); + T3B = T3z + T3A; + T5g = T3z - T3A; + T5h = T3C - T3D; + T3E = T3C + T3D; + Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T5O, T5L)); + Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T5O, T5L)); + Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP951056516, T5Q, T5P)); + Rp[WS(rs, 6)] = KP500000000 * (FMA(KP951056516, T5Q, T5P)); + T3F = T3B + T3E; + T5m = T3B - T3E; + } + Ip[0] = KP500000000 * (T3y + T3F); + T5l = FNMS(KP250000000, T3F, T3y); + T5i = FMA(KP618033988, T5h, T5g); + T5k = FNMS(KP618033988, T5g, T5h); + T5r = FNMS(KP559016994, T5m, T5l); + T5n = FMA(KP559016994, T5m, T5l); + Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T5q, T5n))); + Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T5q, T5n)); + Im[WS(rs, 7)] = -(KP500000000 * (FNMS(KP951056516, T5s, T5r))); + Ip[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5s, T5r)); + T5e = T54 - T5b; + T5c = T54 + T5b; + } + } + } + } + Rp[0] = KP500000000 * (T4X + T5c); + T5d = FNMS(KP250000000, T5c, T4X); + T5j = FNMS(KP559016994, T5e, T5d); + T5f = FMA(KP559016994, T5e, T5d); + Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T5i, T5f)); + Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T5i, T5f)); + Rm[WS(rs, 7)] = KP500000000 * (FNMS(KP951056516, T5k, T5j)); + Rp[WS(rs, 8)] = KP500000000 * (FMA(KP951056516, T5k, T5j)); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, {176, 78, 110, 0} }; + +void X(codelet_hc2cfdft_20) (planner *p) { + X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h */ + +/* + * This function contains 286 FP additions, 140 FP multiplications, + * (or, 224 additions, 78 multiplications, 62 fused multiply/add), + * 98 stack variables, 5 constants, and 80 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP125000000, +0.125000000000000000000000000000000000000000000); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP279508497, +0.279508497187473712051146708591409529430077295); + DK(KP293892626, +0.293892626146236564584352977319536384298826219); + DK(KP475528258, +0.475528258147576786058219666689691071702849317); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { + E T12, T2w, T4o, T4V, T2H, T3a, T4y, T4Y, T1z, T2v, T25, T2y, T2s, T2z, T4v; + E T4X, T4r, T4U, T3A, T3Z, T2X, T37, T3k, T41, T2M, T39, T3v, T3Y, T2S, T36; + E T3p, T42, Td, T4G, T33, T3N, Tw, T4H, T32, T3O; + { + E T3, T3L, T1x, T2V, Th, Tl, TC, T3g, Tq, Tu, TH, T3h, T7, Tb, T1q; + E T2U, TR, T2P, T1F, T3r, T23, T2K, T2f, T3y, T1k, T3m, T2q, T2E, T10, T2Q; + E T1K, T3s, T1U, T2J, T2a, T3x, T1b, T3l, T2l, T2D; + { + E T1, T2, T1s, T1u, T1v, T1w, T1r, T1t; + T1 = Ip[0]; + T2 = Im[0]; + T1s = T1 + T2; + T1u = Rp[0]; + T1v = Rm[0]; + T1w = T1u - T1v; + T3 = T1 - T2; + T3L = T1u + T1v; + T1r = W[0]; + T1t = W[1]; + T1x = FNMS(T1t, T1w, T1r * T1s); + T2V = FMA(T1r, T1w, T1t * T1s); + } + { + E Tf, Tg, Tz, Tj, Tk, TB, Ty, TA; + Tf = Ip[WS(rs, 2)]; + Tg = Im[WS(rs, 2)]; + Tz = Tf - Tg; + Tj = Rp[WS(rs, 2)]; + Tk = Rm[WS(rs, 2)]; + TB = Tj + Tk; + Th = Tf + Tg; + Tl = Tj - Tk; + Ty = W[6]; + TA = W[7]; + TC = FNMS(TA, TB, Ty * Tz); + T3g = FMA(TA, Tz, Ty * TB); + } + { + E To, Tp, TE, Ts, Tt, TG, TD, TF; + To = Ip[WS(rs, 7)]; + Tp = Im[WS(rs, 7)]; + TE = To - Tp; + Ts = Rp[WS(rs, 7)]; + Tt = Rm[WS(rs, 7)]; + TG = Ts + Tt; + Tq = To + Tp; + Tu = Ts - Tt; + TD = W[26]; + TF = W[27]; + TH = FNMS(TF, TG, TD * TE); + T3h = FMA(TF, TE, TD * TG); + } + { + E T5, T6, T1n, T9, Ta, T1p, T1m, T1o; + T5 = Ip[WS(rs, 5)]; + T6 = Im[WS(rs, 5)]; + T1n = T5 + T6; + T9 = Rp[WS(rs, 5)]; + Ta = Rm[WS(rs, 5)]; + T1p = T9 - Ta; + T7 = T5 - T6; + Tb = T9 + Ta; + T1m = W[20]; + T1o = W[21]; + T1q = FNMS(T1o, T1p, T1m * T1n); + T2U = FMA(T1m, T1p, T1o * T1n); + } + { + E TM, T1C, TQ, T1E; + { + E TK, TL, TO, TP; + TK = Ip[WS(rs, 4)]; + TL = Im[WS(rs, 4)]; + TM = TK + TL; + T1C = TK - TL; + TO = Rp[WS(rs, 4)]; + TP = Rm[WS(rs, 4)]; + TQ = TO - TP; + T1E = TO + TP; + } + { + E TJ, TN, T1B, T1D; + TJ = W[16]; + TN = W[17]; + TR = FNMS(TN, TQ, TJ * TM); + T2P = FMA(TN, TM, TJ * TQ); + T1B = W[14]; + T1D = W[15]; + T1F = FNMS(T1D, T1E, T1B * T1C); + T3r = FMA(T1D, T1C, T1B * T1E); + } + } + { + E T1Y, T2c, T22, T2e; + { + E T1W, T1X, T20, T21; + T1W = Ip[WS(rs, 1)]; + T1X = Im[WS(rs, 1)]; + T1Y = T1W + T1X; + T2c = T1W - T1X; + T20 = Rp[WS(rs, 1)]; + T21 = Rm[WS(rs, 1)]; + T22 = T20 - T21; + T2e = T20 + T21; + } + { + E T1V, T1Z, T2b, T2d; + T1V = W[4]; + T1Z = W[5]; + T23 = FNMS(T1Z, T22, T1V * T1Y); + T2K = FMA(T1Z, T1Y, T1V * T22); + T2b = W[2]; + T2d = W[3]; + T2f = FNMS(T2d, T2e, T2b * T2c); + T3y = FMA(T2d, T2c, T2b * T2e); + } + } + { + E T1f, T2n, T1j, T2p; + { + E T1d, T1e, T1h, T1i; + T1d = Ip[WS(rs, 3)]; + T1e = Im[WS(rs, 3)]; + T1f = T1d - T1e; + T2n = T1d + T1e; + T1h = Rp[WS(rs, 3)]; + T1i = Rm[WS(rs, 3)]; + T1j = T1h + T1i; + T2p = T1h - T1i; + } + { + E T1c, T1g, T2m, T2o; + T1c = W[10]; + T1g = W[11]; + T1k = FNMS(T1g, T1j, T1c * T1f); + T3m = FMA(T1c, T1j, T1g * T1f); + T2m = W[12]; + T2o = W[13]; + T2q = FNMS(T2o, T2p, T2m * T2n); + T2E = FMA(T2m, T2p, T2o * T2n); + } + } + { + E TV, T1H, TZ, T1J; + { + E TT, TU, TX, TY; + TT = Ip[WS(rs, 9)]; + TU = Im[WS(rs, 9)]; + TV = TT + TU; + T1H = TT - TU; + TX = Rp[WS(rs, 9)]; + TY = Rm[WS(rs, 9)]; + TZ = TX - TY; + T1J = TX + TY; + } + { + E TS, TW, T1G, T1I; + TS = W[36]; + TW = W[37]; + T10 = FNMS(TW, TZ, TS * TV); + T2Q = FMA(TW, TV, TS * TZ); + T1G = W[34]; + T1I = W[35]; + T1K = FNMS(T1I, T1J, T1G * T1H); + T3s = FMA(T1I, T1H, T1G * T1J); + } + } + { + E T1P, T27, T1T, T29; + { + E T1N, T1O, T1R, T1S; + T1N = Ip[WS(rs, 6)]; + T1O = Im[WS(rs, 6)]; + T1P = T1N + T1O; + T27 = T1N - T1O; + T1R = Rp[WS(rs, 6)]; + T1S = Rm[WS(rs, 6)]; + T1T = T1R - T1S; + T29 = T1R + T1S; + } + { + E T1M, T1Q, T26, T28; + T1M = W[24]; + T1Q = W[25]; + T1U = FNMS(T1Q, T1T, T1M * T1P); + T2J = FMA(T1Q, T1P, T1M * T1T); + T26 = W[22]; + T28 = W[23]; + T2a = FNMS(T28, T29, T26 * T27); + T3x = FMA(T28, T27, T26 * T29); + } + } + { + E T16, T2k, T1a, T2i; + { + E T14, T15, T18, T19; + T14 = Ip[WS(rs, 8)]; + T15 = Im[WS(rs, 8)]; + T16 = T14 - T15; + T2k = T14 + T15; + T18 = Rp[WS(rs, 8)]; + T19 = Rm[WS(rs, 8)]; + T1a = T18 + T19; + T2i = T19 - T18; + } + { + E T13, T17, T2h, T2j; + T13 = W[30]; + T17 = W[31]; + T1b = FNMS(T17, T1a, T13 * T16); + T3l = FMA(T13, T1a, T17 * T16); + T2h = W[33]; + T2j = W[32]; + T2l = FMA(T2h, T2i, T2j * T2k); + T2D = FNMS(T2h, T2k, T2j * T2i); + } + } + { + E T2g, T2r, T3n, T3o; + { + E TI, T11, T4m, T4n; + TI = TC - TH; + T11 = TR - T10; + T12 = TI - T11; + T2w = TI + T11; + T4m = T3g + T3h; + T4n = TR + T10; + T4o = T4m + T4n; + T4V = T4m - T4n; + } + { + E T2F, T2G, T4w, T4x; + T2F = T2D - T2E; + T2G = T2a + T2f; + T2H = T2F - T2G; + T3a = T2F + T2G; + T4w = T2l + T2q; + T4x = T3x + T3y; + T4y = T4w + T4x; + T4Y = T4x - T4w; + } + { + E T1l, T1y, T1L, T24; + T1l = T1b - T1k; + T1y = T1q - T1x; + T1z = T1l + T1y; + T2v = T1y - T1l; + T1L = T1F - T1K; + T24 = T1U - T23; + T25 = T1L - T24; + T2y = T1L + T24; + } + T2g = T2a - T2f; + T2r = T2l - T2q; + T2s = T2g - T2r; + T2z = T2r + T2g; + { + E T4t, T4u, T4p, T4q; + T4t = T3r + T3s; + T4u = T1U + T23; + T4v = T4t + T4u; + T4X = T4t - T4u; + T4p = T3l + T3m; + T4q = T1q + T1x; + T4r = T4p + T4q; + T4U = T4p - T4q; + } + { + E T3w, T3z, T2T, T2W; + T3w = T2D + T2E; + T3z = T3x - T3y; + T3A = T3w + T3z; + T3Z = T3z - T3w; + T2T = T1b + T1k; + T2W = T2U + T2V; + T2X = T2T + T2W; + T37 = T2T - T2W; + } + { + E T3i, T3j, T2I, T2L; + T3i = T3g - T3h; + T3j = T2Q - T2P; + T3k = T3i + T3j; + T41 = T3i - T3j; + T2I = T1F + T1K; + T2L = T2J + T2K; + T2M = T2I + T2L; + T39 = T2I - T2L; + } + { + E T3t, T3u, T2O, T2R; + T3t = T3r - T3s; + T3u = T2K - T2J; + T3v = T3t + T3u; + T3Y = T3t - T3u; + T2O = TC + TH; + T2R = T2P + T2Q; + T2S = T2O + T2R; + T36 = T2O - T2R; + } + T3n = T3l - T3m; + T3o = T2U - T2V; + T3p = T3n + T3o; + T42 = T3n - T3o; + { + E Tc, T3M, T4, T8; + T4 = W[18]; + T8 = W[19]; + Tc = FNMS(T8, Tb, T4 * T7); + T3M = FMA(T4, Tb, T8 * T7); + Td = T3 - Tc; + T4G = T3L + T3M; + T33 = Tc + T3; + T3N = T3L - T3M; + } + { + E Tm, T30, Tv, T31; + { + E Te, Ti, Tn, Tr; + Te = W[8]; + Ti = W[9]; + Tm = FNMS(Ti, Tl, Te * Th); + T30 = FMA(Ti, Th, Te * Tl); + Tn = W[28]; + Tr = W[29]; + Tv = FNMS(Tr, Tu, Tn * Tq); + T31 = FMA(Tr, Tq, Tn * Tu); + } + Tw = Tm - Tv; + T4H = Tm + Tv; + T32 = T30 + T31; + T3O = T31 - T30; + } + } + } + { + E T3C, T3E, Tx, T2u, T3d, T3e, T3D, T3f; + { + E T3q, T3B, T1A, T2t; + T3q = T3k - T3p; + T3B = T3v - T3A; + T3C = FMA(KP475528258, T3q, KP293892626 * T3B); + T3E = FNMS(KP293892626, T3q, KP475528258 * T3B); + Tx = Td - Tw; + T1A = T12 + T1z; + T2t = T25 + T2s; + T2u = T1A + T2t; + T3d = KP279508497 * (T1A - T2t); + T3e = FNMS(KP125000000, T2u, KP500000000 * Tx); + } + Ip[WS(rs, 5)] = KP500000000 * (Tx + T2u); + T3D = T3d - T3e; + Im[WS(rs, 2)] = T3D - T3E; + Im[WS(rs, 6)] = T3D + T3E; + T3f = T3d + T3e; + Ip[WS(rs, 1)] = T3f - T3C; + Ip[WS(rs, 9)] = T3f + T3C; + } + { + E T3H, T3T, T3P, T3Q, T3K, T3R, T3U, T3S; + { + E T3F, T3G, T3I, T3J; + T3F = T12 - T1z; + T3G = T25 - T2s; + T3H = FMA(KP475528258, T3F, KP293892626 * T3G); + T3T = FNMS(KP293892626, T3F, KP475528258 * T3G); + T3P = T3N + T3O; + T3I = T3k + T3p; + T3J = T3v + T3A; + T3Q = T3I + T3J; + T3K = KP279508497 * (T3I - T3J); + T3R = FNMS(KP125000000, T3Q, KP500000000 * T3P); + } + Rp[WS(rs, 5)] = KP500000000 * (T3P + T3Q); + T3U = T3R - T3K; + Rm[WS(rs, 6)] = T3T + T3U; + Rm[WS(rs, 2)] = T3U - T3T; + T3S = T3K + T3R; + Rp[WS(rs, 1)] = T3H + T3S; + Rp[WS(rs, 9)] = T3S - T3H; + } + { + E T44, T46, T2C, T2B, T3V, T3W, T45, T3X; + { + E T40, T43, T2x, T2A; + T40 = T3Y - T3Z; + T43 = T41 - T42; + T44 = FNMS(KP293892626, T43, KP475528258 * T40); + T46 = FMA(KP475528258, T43, KP293892626 * T40); + T2C = Tw + Td; + T2x = T2v - T2w; + T2A = T2y + T2z; + T2B = T2x - T2A; + T3V = FMA(KP500000000, T2C, KP125000000 * T2B); + T3W = KP279508497 * (T2x + T2A); + } + Im[WS(rs, 4)] = KP500000000 * (T2B - T2C); + T45 = T3W - T3V; + Im[0] = T45 - T46; + Im[WS(rs, 8)] = T45 + T46; + T3X = T3V + T3W; + Ip[WS(rs, 3)] = T3X - T44; + Ip[WS(rs, 7)] = T3X + T44; + } + { + E T49, T4h, T4a, T4d, T4e, T4f, T4i, T4g; + { + E T47, T48, T4b, T4c; + T47 = T2y - T2z; + T48 = T2w + T2v; + T49 = FNMS(KP293892626, T48, KP475528258 * T47); + T4h = FMA(KP475528258, T48, KP293892626 * T47); + T4a = T3N - T3O; + T4b = T41 + T42; + T4c = T3Y + T3Z; + T4d = T4b + T4c; + T4e = FNMS(KP125000000, T4d, KP500000000 * T4a); + T4f = KP279508497 * (T4b - T4c); + } + Rm[WS(rs, 4)] = KP500000000 * (T4a + T4d); + T4i = T4f + T4e; + Rm[WS(rs, 8)] = T4h + T4i; + Rm[0] = T4i - T4h; + T4g = T4e - T4f; + Rp[WS(rs, 3)] = T49 + T4g; + Rp[WS(rs, 7)] = T4g - T49; + } + { + E T50, T52, T34, T2Z, T4R, T4S, T51, T4T; + { + E T4W, T4Z, T2N, T2Y; + T4W = T4U - T4V; + T4Z = T4X - T4Y; + T50 = FNMS(KP293892626, T4Z, KP475528258 * T4W); + T52 = FMA(KP293892626, T4W, KP475528258 * T4Z); + T34 = T32 + T33; + T2N = T2H - T2M; + T2Y = T2S + T2X; + T2Z = T2N - T2Y; + T4R = FMA(KP500000000, T34, KP125000000 * T2Z); + T4S = KP279508497 * (T2Y + T2N); + } + Im[WS(rs, 9)] = KP500000000 * (T2Z - T34); + T51 = T4R - T4S; + Ip[WS(rs, 2)] = T51 + T52; + Im[WS(rs, 1)] = T52 - T51; + T4T = T4R + T4S; + Ip[WS(rs, 6)] = T4T + T50; + Im[WS(rs, 5)] = T50 - T4T; + } + { + E T5c, T5d, T53, T56, T57, T58, T5e, T59; + { + E T5a, T5b, T54, T55; + T5a = T2M + T2H; + T5b = T2S - T2X; + T5c = FNMS(KP293892626, T5b, KP475528258 * T5a); + T5d = FMA(KP475528258, T5b, KP293892626 * T5a); + T53 = T4G - T4H; + T54 = T4V + T4U; + T55 = T4X + T4Y; + T56 = T54 + T55; + T57 = FNMS(KP125000000, T56, KP500000000 * T53); + T58 = KP279508497 * (T54 - T55); + } + Rm[WS(rs, 9)] = KP500000000 * (T53 + T56); + T5e = T58 + T57; + Rp[WS(rs, 6)] = T5d + T5e; + Rm[WS(rs, 5)] = T5e - T5d; + T59 = T57 - T58; + Rp[WS(rs, 2)] = T59 - T5c; + Rm[WS(rs, 1)] = T5c + T59; + } + { + E T4A, T4C, T35, T3c, T4j, T4k, T4B, T4l; + { + E T4s, T4z, T38, T3b; + T4s = T4o - T4r; + T4z = T4v - T4y; + T4A = FNMS(KP475528258, T4z, KP293892626 * T4s); + T4C = FMA(KP475528258, T4s, KP293892626 * T4z); + T35 = T33 - T32; + T38 = T36 + T37; + T3b = T39 + T3a; + T3c = T38 + T3b; + T4j = FNMS(KP125000000, T3c, KP500000000 * T35); + T4k = KP279508497 * (T38 - T3b); + } + Ip[0] = KP500000000 * (T35 + T3c); + T4B = T4k + T4j; + Ip[WS(rs, 4)] = T4B + T4C; + Im[WS(rs, 3)] = T4C - T4B; + T4l = T4j - T4k; + Ip[WS(rs, 8)] = T4l + T4A; + Im[WS(rs, 7)] = T4A - T4l; + } + { + E T4O, T4P, T4I, T4J, T4F, T4K, T4Q, T4L; + { + E T4M, T4N, T4D, T4E; + T4M = T36 - T37; + T4N = T39 - T3a; + T4O = FMA(KP475528258, T4M, KP293892626 * T4N); + T4P = FNMS(KP293892626, T4M, KP475528258 * T4N); + T4I = T4G + T4H; + T4D = T4o + T4r; + T4E = T4v + T4y; + T4J = T4D + T4E; + T4F = KP279508497 * (T4D - T4E); + T4K = FNMS(KP125000000, T4J, KP500000000 * T4I); + } + Rp[0] = KP500000000 * (T4I + T4J); + T4Q = T4K - T4F; + Rp[WS(rs, 8)] = T4P + T4Q; + Rm[WS(rs, 7)] = T4Q - T4P; + T4L = T4F + T4K; + Rp[WS(rs, 4)] = T4L - T4O; + Rm[WS(rs, 3)] = T4O + T4L; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cfdft_20", twinstr, &GENUS, {224, 78, 62, 0} }; + +void X(codelet_hc2cfdft_20) (planner *p) { + X(khc2c_register) (p, hc2cfdft_20, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */