diff src/fftw-3.3.3/rdft/scalar/r2cf/hc2cf2_8.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hc2cf2_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,391 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:40:42 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cf2_8 -include hc2cf.h */
+
+/*
+ * This function contains 74 FP additions, 50 FP multiplications,
+ * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
+ * 64 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cf.h"
+
+static void hc2cf2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E TS, T1m, TJ, T1l, T1k, Tw, T1w, T1u;
+	       {
+		    E T2, T3, Tl, Tn, T5, T4, Tm, Tr, T6;
+		    T2 = W[0];
+		    T3 = W[2];
+		    Tl = W[4];
+		    Tn = W[5];
+		    T5 = W[1];
+		    T4 = T2 * T3;
+		    Tm = T2 * Tl;
+		    Tr = T2 * Tn;
+		    T6 = W[3];
+		    {
+			 E T1, T1s, TG, Td, T1r, Tu, TY, Tk, TW, T18, T1d, TD, TH, TA, T13;
+			 E TE, T14;
+			 {
+			      E To, Ts, Tf, T7, T8, Ti, Tb, T9, Tc, TC, Ta, TF, TB, Tg, Th;
+			      E Tj;
+			      T1 = Rp[0];
+			      To = FMA(T5, Tn, Tm);
+			      Ts = FNMS(T5, Tl, Tr);
+			      Tf = FMA(T5, T6, T4);
+			      T7 = FNMS(T5, T6, T4);
+			      Ta = T2 * T6;
+			      T1s = Rm[0];
+			      T8 = Rp[WS(rs, 2)];
+			      TF = Tf * Tn;
+			      TB = Tf * Tl;
+			      Ti = FNMS(T5, T3, Ta);
+			      Tb = FMA(T5, T3, Ta);
+			      T9 = T7 * T8;
+			      Tc = Rm[WS(rs, 2)];
+			      TG = FNMS(Ti, Tl, TF);
+			      TC = FMA(Ti, Tn, TB);
+			      {
+				   E Tp, T1q, Tt, Tq, TX;
+				   Tp = Rp[WS(rs, 3)];
+				   Td = FMA(Tb, Tc, T9);
+				   T1q = T7 * Tc;
+				   Tt = Rm[WS(rs, 3)];
+				   Tq = To * Tp;
+				   Tg = Rp[WS(rs, 1)];
+				   T1r = FNMS(Tb, T8, T1q);
+				   TX = To * Tt;
+				   Tu = FMA(Ts, Tt, Tq);
+				   Th = Tf * Tg;
+				   Tj = Rm[WS(rs, 1)];
+				   TY = FNMS(Ts, Tp, TX);
+			      }
+			      {
+				   E TO, TQ, TN, TP, T1a, T1b;
+				   {
+					E TK, TM, TL, T19, TV;
+					TK = Ip[WS(rs, 3)];
+					TM = Im[WS(rs, 3)];
+					Tk = FMA(Ti, Tj, Th);
+					TV = Tf * Tj;
+					TL = Tl * TK;
+					T19 = Tl * TM;
+					TO = Ip[WS(rs, 1)];
+					TW = FNMS(Ti, Tg, TV);
+					TQ = Im[WS(rs, 1)];
+					TN = FMA(Tn, TM, TL);
+					TP = T3 * TO;
+					T1a = FNMS(Tn, TK, T19);
+					T1b = T3 * TQ;
+				   }
+				   {
+					E Tx, Tz, Ty, T12, T1c, TR;
+					Tx = Ip[0];
+					TR = FMA(T6, TQ, TP);
+					Tz = Im[0];
+					T1c = FNMS(T6, TO, T1b);
+					Ty = T2 * Tx;
+					T18 = TN - TR;
+					TS = TN + TR;
+					T12 = T2 * Tz;
+					T1d = T1a - T1c;
+					T1m = T1a + T1c;
+					TD = Ip[WS(rs, 2)];
+					TH = Im[WS(rs, 2)];
+					TA = FMA(T5, Tz, Ty);
+					T13 = FNMS(T5, Tx, T12);
+					TE = TC * TD;
+					T14 = TC * TH;
+				   }
+			      }
+			 }
+			 {
+			      E Te, T1p, T1t, Tv;
+			      {
+				   E T1g, T10, T1z, T1B, T1A, T1j, T1C, T1f;
+				   {
+					E T1x, T11, T16, T1y;
+					{
+					     E TU, TZ, TI, T15;
+					     Te = T1 + Td;
+					     TU = T1 - Td;
+					     TZ = TW - TY;
+					     T1p = TW + TY;
+					     TI = FMA(TG, TH, TE);
+					     T15 = FNMS(TG, TD, T14);
+					     T1t = T1r + T1s;
+					     T1x = T1s - T1r;
+					     T1g = TU - TZ;
+					     T10 = TU + TZ;
+					     T11 = TA - TI;
+					     TJ = TA + TI;
+					     T1l = T13 + T15;
+					     T16 = T13 - T15;
+					     T1y = Tk - Tu;
+					     Tv = Tk + Tu;
+					}
+					{
+					     E T1i, T1e, T17, T1h;
+					     T1i = T18 + T1d;
+					     T1e = T18 - T1d;
+					     T17 = T11 + T16;
+					     T1h = T16 - T11;
+					     T1z = T1x - T1y;
+					     T1B = T1y + T1x;
+					     T1A = T1h + T1i;
+					     T1j = T1h - T1i;
+					     T1C = T1e - T17;
+					     T1f = T17 + T1e;
+					}
+				   }
+				   Rm[0] = FNMS(KP707106781, T1j, T1g);
+				   Im[0] = FMS(KP707106781, T1C, T1B);
+				   Rp[WS(rs, 1)] = FMA(KP707106781, T1f, T10);
+				   Rm[WS(rs, 2)] = FNMS(KP707106781, T1f, T10);
+				   Ip[WS(rs, 1)] = FMA(KP707106781, T1A, T1z);
+				   Im[WS(rs, 2)] = FMS(KP707106781, T1A, T1z);
+				   Rp[WS(rs, 3)] = FMA(KP707106781, T1j, T1g);
+				   Ip[WS(rs, 3)] = FMA(KP707106781, T1C, T1B);
+			      }
+			      T1k = Te - Tv;
+			      Tw = Te + Tv;
+			      T1w = T1t - T1p;
+			      T1u = T1p + T1t;
+			 }
+		    }
+	       }
+	       {
+		    E TT, T1v, T1n, T1o;
+		    TT = TJ + TS;
+		    T1v = TS - TJ;
+		    T1n = T1l - T1m;
+		    T1o = T1l + T1m;
+		    Ip[WS(rs, 2)] = T1v + T1w;
+		    Im[WS(rs, 1)] = T1v - T1w;
+		    Rp[0] = Tw + TT;
+		    Rm[WS(rs, 3)] = Tw - TT;
+		    Ip[0] = T1o + T1u;
+		    Im[WS(rs, 3)] = T1o - T1u;
+		    Rp[WS(rs, 2)] = T1k + T1n;
+		    Rm[WS(rs, 1)] = T1k - T1n;
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cf2_8", twinstr, &GENUS, {44, 20, 30, 0} };
+
+void X(codelet_hc2cf2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cf2_8, &desc, HC2C_VIA_RDFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cf2_8 -include hc2cf.h */
+
+/*
+ * This function contains 74 FP additions, 44 FP multiplications,
+ * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
+ * 42 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cf.h"
+
+static void hc2cf2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
+	       {
+		    E T4, Tb, T7, Ta;
+		    T2 = W[0];
+		    T5 = W[1];
+		    T3 = W[2];
+		    T6 = W[3];
+		    T4 = T2 * T3;
+		    Tb = T5 * T3;
+		    T7 = T5 * T6;
+		    Ta = T2 * T6;
+		    T8 = T4 - T7;
+		    Tc = Ta + Tb;
+		    Tg = T4 + T7;
+		    Ti = Ta - Tb;
+		    Tl = W[4];
+		    Tm = W[5];
+		    Tn = FMA(T2, Tl, T5 * Tm);
+		    Tz = FNMS(Ti, Tl, Tg * Tm);
+		    Tp = FNMS(T5, Tl, T2 * Tm);
+		    Tx = FMA(Tg, Tl, Ti * Tm);
+	       }
+	       {
+		    E Tf, T1i, TL, T1d, TJ, T17, TV, TY, Ts, T1j, TO, T1a, TC, T16, TQ;
+		    E TT;
+		    {
+			 E T1, T1c, Te, T1b, T9, Td;
+			 T1 = Rp[0];
+			 T1c = Rm[0];
+			 T9 = Rp[WS(rs, 2)];
+			 Td = Rm[WS(rs, 2)];
+			 Te = FMA(T8, T9, Tc * Td);
+			 T1b = FNMS(Tc, T9, T8 * Td);
+			 Tf = T1 + Te;
+			 T1i = T1c - T1b;
+			 TL = T1 - Te;
+			 T1d = T1b + T1c;
+		    }
+		    {
+			 E TF, TW, TI, TX;
+			 {
+			      E TD, TE, TG, TH;
+			      TD = Ip[WS(rs, 3)];
+			      TE = Im[WS(rs, 3)];
+			      TF = FMA(Tl, TD, Tm * TE);
+			      TW = FNMS(Tm, TD, Tl * TE);
+			      TG = Ip[WS(rs, 1)];
+			      TH = Im[WS(rs, 1)];
+			      TI = FMA(T3, TG, T6 * TH);
+			      TX = FNMS(T6, TG, T3 * TH);
+			 }
+			 TJ = TF + TI;
+			 T17 = TW + TX;
+			 TV = TF - TI;
+			 TY = TW - TX;
+		    }
+		    {
+			 E Tk, TM, Tr, TN;
+			 {
+			      E Th, Tj, To, Tq;
+			      Th = Rp[WS(rs, 1)];
+			      Tj = Rm[WS(rs, 1)];
+			      Tk = FMA(Tg, Th, Ti * Tj);
+			      TM = FNMS(Ti, Th, Tg * Tj);
+			      To = Rp[WS(rs, 3)];
+			      Tq = Rm[WS(rs, 3)];
+			      Tr = FMA(Tn, To, Tp * Tq);
+			      TN = FNMS(Tp, To, Tn * Tq);
+			 }
+			 Ts = Tk + Tr;
+			 T1j = Tk - Tr;
+			 TO = TM - TN;
+			 T1a = TM + TN;
+		    }
+		    {
+			 E Tw, TR, TB, TS;
+			 {
+			      E Tu, Tv, Ty, TA;
+			      Tu = Ip[0];
+			      Tv = Im[0];
+			      Tw = FMA(T2, Tu, T5 * Tv);
+			      TR = FNMS(T5, Tu, T2 * Tv);
+			      Ty = Ip[WS(rs, 2)];
+			      TA = Im[WS(rs, 2)];
+			      TB = FMA(Tx, Ty, Tz * TA);
+			      TS = FNMS(Tz, Ty, Tx * TA);
+			 }
+			 TC = Tw + TB;
+			 T16 = TR + TS;
+			 TQ = Tw - TB;
+			 TT = TR - TS;
+		    }
+		    {
+			 E Tt, TK, T1f, T1g;
+			 Tt = Tf + Ts;
+			 TK = TC + TJ;
+			 Rm[WS(rs, 3)] = Tt - TK;
+			 Rp[0] = Tt + TK;
+			 {
+			      E T19, T1e, T15, T18;
+			      T19 = T16 + T17;
+			      T1e = T1a + T1d;
+			      Im[WS(rs, 3)] = T19 - T1e;
+			      Ip[0] = T19 + T1e;
+			      T15 = Tf - Ts;
+			      T18 = T16 - T17;
+			      Rm[WS(rs, 1)] = T15 - T18;
+			      Rp[WS(rs, 2)] = T15 + T18;
+			 }
+			 T1f = TJ - TC;
+			 T1g = T1d - T1a;
+			 Im[WS(rs, 1)] = T1f - T1g;
+			 Ip[WS(rs, 2)] = T1f + T1g;
+			 {
+			      E T11, T1k, T14, T1h, T12, T13;
+			      T11 = TL - TO;
+			      T1k = T1i - T1j;
+			      T12 = TT - TQ;
+			      T13 = TV + TY;
+			      T14 = KP707106781 * (T12 - T13);
+			      T1h = KP707106781 * (T12 + T13);
+			      Rm[0] = T11 - T14;
+			      Ip[WS(rs, 1)] = T1h + T1k;
+			      Rp[WS(rs, 3)] = T11 + T14;
+			      Im[WS(rs, 2)] = T1h - T1k;
+			 }
+			 {
+			      E TP, T1m, T10, T1l, TU, TZ;
+			      TP = TL + TO;
+			      T1m = T1j + T1i;
+			      TU = TQ + TT;
+			      TZ = TV - TY;
+			      T10 = KP707106781 * (TU + TZ);
+			      T1l = KP707106781 * (TZ - TU);
+			      Rm[WS(rs, 2)] = TP - T10;
+			      Ip[WS(rs, 3)] = T1l + T1m;
+			      Rp[WS(rs, 1)] = TP + T10;
+			      Im[0] = T1l - T1m;
+			 }
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cf2_8", twinstr, &GENUS, {56, 26, 18, 0} };
+
+void X(codelet_hc2cf2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cf2_8, &desc, HC2C_VIA_RDFT);
+}
+#endif				/* HAVE_FMA */