Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_9.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,211 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:07 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */ + +/* + * This function contains 32 FP additions, 24 FP multiplications, + * (or, 8 additions, 0 multiplications, 24 fused multiply/add), + * 40 stack variables, 12 constants, and 18 memory accesses + */ +#include "r2cb.h" + +static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); + DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); + DK(KP839099631, +0.839099631177280011763127298123181364687434283); + DK(KP176326980, +0.176326980708464973471090386868618986121633062); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T4, Th, T3, Tb, Tp, Tk, T7, Tf, Ti, Ta, T1, T2; + Ta = Ci[WS(csi, 3)]; + T1 = Cr[0]; + T2 = Cr[WS(csr, 3)]; + T4 = Cr[WS(csr, 1)]; + Th = Ci[WS(csi, 1)]; + { + E T5, T9, T6, Td, Te; + T5 = Cr[WS(csr, 4)]; + T9 = T1 - T2; + T3 = FMA(KP2_000000000, T2, T1); + T6 = Cr[WS(csr, 2)]; + Td = Ci[WS(csi, 4)]; + Te = Ci[WS(csi, 2)]; + Tb = FNMS(KP1_732050807, Ta, T9); + Tp = FMA(KP1_732050807, Ta, T9); + Tk = T6 - T5; + T7 = T5 + T6; + Tf = Td + Te; + Ti = Td - Te; + } + { + E Tu, To, Tt, Tn, Tc, T8; + Tc = FNMS(KP500000000, T7, T4); + T8 = T4 + T7; + { + E Tw, Tj, Tr, Tg, Tv; + Tw = Ti + Th; + Tj = FNMS(KP500000000, Ti, Th); + Tr = FMA(KP866025403, Tf, Tc); + Tg = FNMS(KP866025403, Tf, Tc); + Tv = T3 - T8; + R0[0] = FMA(KP2_000000000, T8, T3); + { + E Tq, Tl, Ts, Tm; + Tq = FMA(KP866025403, Tk, Tj); + Tl = FNMS(KP866025403, Tk, Tj); + R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); + R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); + Ts = FNMS(KP176326980, Tr, Tq); + Tu = FMA(KP176326980, Tq, Tr); + Tm = FNMS(KP839099631, Tl, Tg); + To = FMA(KP839099631, Tg, Tl); + R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); + Tt = FMA(KP984807753, Ts, Tp); + R1[0] = FMA(KP1_532088886, Tm, Tb); + Tn = FNMS(KP766044443, Tm, Tb); + } + } + R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); + R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); + R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); + R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cb_9", {8, 0, 24, 0}, &GENUS }; + +void X(codelet_r2cb_9) (planner *p) { + X(kr2c_register) (p, r2cb_9, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include r2cb.h */ + +/* + * This function contains 32 FP additions, 18 FP multiplications, + * (or, 22 additions, 8 multiplications, 10 fused multiply/add), + * 35 stack variables, 12 constants, and 18 memory accesses + */ +#include "r2cb.h" + +static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP300767466, +0.300767466360870593278543795225003852144476517); + DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); + DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; + { + E Tb, T1, T2, T9, Ta; + Ta = Ci[WS(csi, 3)]; + Tb = KP1_732050807 * Ta; + T1 = Cr[0]; + T2 = Cr[WS(csr, 3)]; + T9 = T1 - T2; + T3 = FMA(KP2_000000000, T2, T1); + Tq = T9 + Tb; + Tc = T9 - Tb; + } + { + E T4, T7, Ti, Tg, Tl, Td; + T4 = Cr[WS(csr, 1)]; + Tk = Ci[WS(csi, 1)]; + { + E T5, T6, Te, Tf; + T5 = Cr[WS(csr, 4)]; + T6 = Cr[WS(csr, 2)]; + T7 = T5 + T6; + Ti = KP866025403 * (T5 - T6); + Te = Ci[WS(csi, 4)]; + Tf = Ci[WS(csi, 2)]; + Tg = KP866025403 * (Te + Tf); + Tj = Tf - Te; + } + T8 = T4 + T7; + Tl = FMA(KP500000000, Tj, Tk); + Tm = Ti + Tl; + Ts = Tl - Ti; + Td = FNMS(KP500000000, T7, T4); + Th = Td - Tg; + Tr = Td + Tg; + } + R0[0] = FMA(KP2_000000000, T8, T3); + Tw = T3 - T8; + Tx = KP1_732050807 * (Tk - Tj); + R1[WS(rs, 1)] = Tw - Tx; + R0[WS(rs, 3)] = Tw + Tx; + { + E Tp, Tn, To, Tv, Tt, Tu; + Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); + Tn = FNMS(KP642787609, Tm, KP766044443 * Th); + To = Tc - Tn; + R1[0] = FMA(KP2_000000000, Tn, Tc); + R1[WS(rs, 3)] = To + Tp; + R0[WS(rs, 2)] = To - Tp; + Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); + Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); + Tu = Tq - Tt; + R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); + R0[WS(rs, 4)] = Tu + Tv; + R1[WS(rs, 2)] = Tu - Tv; + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cb_9", {22, 8, 10, 0}, &GENUS }; + +void X(codelet_r2cb_9) (planner *p) { + X(kr2c_register) (p, r2cb_9, &desc); +} + +#endif /* HAVE_FMA */