Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_14.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_14.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,260 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:08 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include r2cb.h */ + +/* + * This function contains 62 FP additions, 44 FP multiplications, + * (or, 18 additions, 0 multiplications, 44 fused multiply/add), + * 58 stack variables, 7 constants, and 28 memory accesses + */ +#include "r2cb.h" + +static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); + DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); + DK(KP692021471, +0.692021471630095869627814897002069140197260599); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP356895867, +0.356895867892209443894399510021300583399127187); + DK(KP801937735, +0.801937735804838252472204639014890102331838324); + DK(KP554958132, +0.554958132087371191422194871006410481067288862); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { + E Te, TO, TT, TG, TJ, TD, TR, TE; + { + E T3, TK, To, TM, Tu, TL, Tr, TS, TA, TN, TX, TF, Tv, T7, Tf; + E T6, Th, Tc, T8, T1, T2; + T1 = Cr[0]; + T2 = Cr[WS(csr, 7)]; + { + E Ts, Tt, Tp, Tq, Tm, Tn; + Tm = Ci[WS(csi, 4)]; + Tn = Ci[WS(csi, 3)]; + Ts = Ci[WS(csi, 6)]; + Te = T1 + T2; + T3 = T1 - T2; + TK = Tm + Tn; + To = Tm - Tn; + Tt = Ci[WS(csi, 1)]; + Tp = Ci[WS(csi, 2)]; + Tq = Ci[WS(csi, 5)]; + { + E T4, T5, Ta, Tb; + T4 = Cr[WS(csr, 2)]; + TM = Ts + Tt; + Tu = Ts - Tt; + TL = Tp + Tq; + Tr = Tp - Tq; + TS = FMA(KP554958132, TK, TM); + TA = FMA(KP554958132, To, Tu); + TN = FMA(KP554958132, TM, TL); + TX = FNMS(KP554958132, TL, TK); + TF = FNMS(KP554958132, Tr, To); + Tv = FMA(KP554958132, Tu, Tr); + T5 = Cr[WS(csr, 5)]; + Ta = Cr[WS(csr, 6)]; + Tb = Cr[WS(csr, 1)]; + T7 = Cr[WS(csr, 4)]; + Tf = T4 + T5; + T6 = T4 - T5; + Th = Ta + Tb; + Tc = Ta - Tb; + T8 = Cr[WS(csr, 3)]; + } + } + { + E Tw, Tx, TP, Tg, T9, TY, TC, TI, TQ; + Tw = FMA(KP801937735, Tv, To); + Tx = FNMS(KP356895867, Tf, Th); + TP = FNMS(KP356895867, T6, Tc); + Tg = T7 + T8; + T9 = T7 - T8; + TY = FNMS(KP801937735, TX, TM); + { + E TB, TH, TV, Ty, Tl, Ti, TW, Tz; + TB = FNMS(KP801937735, TA, Tr); + Ti = Tf + Tg + Th; + TC = FNMS(KP356895867, Th, Tg); + { + E Tj, Td, TU, Tk; + Tj = FNMS(KP356895867, Tg, Tf); + Td = T6 + T9 + Tc; + TH = FNMS(KP356895867, T9, T6); + TU = FNMS(KP356895867, Tc, T9); + R0[0] = FMA(KP2_000000000, Ti, Te); + Tk = FNMS(KP692021471, Tj, Th); + R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3); + TV = FNMS(KP692021471, TU, T6); + Ty = FNMS(KP692021471, Tx, Tg); + Tl = FNMS(KP1_801937735, Tk, Te); + } + TO = FMA(KP801937735, TN, TK); + TW = FNMS(KP1_801937735, TV, T3); + Tz = FNMS(KP1_801937735, Ty, Te); + R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl); + R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl); + R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW); + R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW); + R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz); + R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz); + TI = FNMS(KP692021471, TH, Tc); + } + TT = FNMS(KP801937735, TS, TL); + TQ = FNMS(KP692021471, TP, T9); + TG = FNMS(KP801937735, TF, Tu); + TJ = FNMS(KP1_801937735, TI, T3); + TD = FNMS(KP692021471, TC, Tf); + TR = FNMS(KP1_801937735, TQ, T3); + } + } + R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ); + R1[0] = FNMS(KP1_949855824, TO, TJ); + TE = FNMS(KP1_801937735, TD, Te); + R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR); + R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR); + R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE); + R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE); + } + } +} + +static const kr2c_desc desc = { 14, "r2cb_14", {18, 0, 44, 0}, &GENUS }; + +void X(codelet_r2cb_14) (planner *p) { + X(kr2c_register) (p, r2cb_14, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include r2cb.h */ + +/* + * This function contains 62 FP additions, 38 FP multiplications, + * (or, 36 additions, 12 multiplications, 26 fused multiply/add), + * 28 stack variables, 7 constants, and 28 memory accesses + */ +#include "r2cb.h" + +static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); + DK(KP445041867, +0.445041867912628808577805128993589518932711138); + DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); + DK(KP867767478, +0.867767478235116240951536665696717509219981456); + DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); + DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { + E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1; + E T2; + T1 = Cr[0]; + T2 = Cr[WS(csr, 7)]; + T3 = T1 - T2; + Td = T1 + T2; + { + E T4, T5, To, Tp; + T4 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 5)]; + T6 = T4 - T5; + Te = T4 + T5; + To = Ci[WS(csi, 2)]; + Tp = Ci[WS(csi, 5)]; + Tq = To - Tp; + Tz = To + Tp; + } + { + E Tl, Tm, Ta, Tb; + Tl = Ci[WS(csi, 6)]; + Tm = Ci[WS(csi, 1)]; + Tn = Tl - Tm; + Ty = Tl + Tm; + Ta = Cr[WS(csr, 6)]; + Tb = Cr[WS(csr, 1)]; + Tc = Ta - Tb; + Tg = Ta + Tb; + } + { + E Ti, Tj, T7, T8; + Ti = Ci[WS(csi, 4)]; + Tj = Ci[WS(csi, 3)]; + Tk = Ti - Tj; + Tx = Ti + Tj; + T7 = Cr[WS(csr, 4)]; + T8 = Cr[WS(csr, 3)]; + T9 = T7 - T8; + Tf = T7 + T8; + } + R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3); + R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td); + { + E Tr, Th, TE, TD; + Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq); + Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te); + R0[WS(rs, 2)] = Th - Tr; + R0[WS(rs, 5)] = Th + Tr; + TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz); + TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6); + R1[WS(rs, 2)] = TD - TE; + R1[WS(rs, 4)] = TD + TE; + } + { + E Tt, Ts, TA, Tw; + Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq); + Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te); + R0[WS(rs, 6)] = Ts - Tt; + R0[WS(rs, 1)] = Ts + Tt; + TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz); + Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6); + R1[WS(rs, 5)] = Tw - TA; + R1[WS(rs, 1)] = Tw + TA; + } + { + E TC, TB, Tv, Tu; + TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty); + TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9); + R1[0] = TB - TC; + R1[WS(rs, 6)] = TB + TC; + Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn); + Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf); + R0[WS(rs, 4)] = Tu - Tv; + R0[WS(rs, 3)] = Tu + Tv; + } + } + } +} + +static const kr2c_desc desc = { 14, "r2cb_14", {36, 12, 26, 0}, &GENUS }; + +void X(codelet_r2cb_14) (planner *p) { + X(kr2c_register) (p, r2cb_14, &desc); +} + +#endif /* HAVE_FMA */