Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_11.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_11.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,234 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:07 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */ + +/* + * This function contains 60 FP additions, 56 FP multiplications, + * (or, 4 additions, 0 multiplications, 56 fused multiply/add), + * 53 stack variables, 11 constants, and 22 memory accesses + */ +#include "r2cb.h" + +static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_979642883, +1.979642883761865464752184075553437574753038744); + DK(KP1_918985947, +1.918985947228994779780736114132655398124909697); + DK(KP876768831, +0.876768831002589333891339807079336796764054852); + DK(KP918985947, +0.918985947228994779780736114132655398124909697); + DK(KP778434453, +0.778434453334651800608337670740821884709317477); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP634356270, +0.634356270682424498893150776899916060542806975); + DK(KP342584725, +0.342584725681637509502641509861112333758894680); + DK(KP830830026, +0.830830026003772851058548298459246407048009821); + DK(KP715370323, +0.715370323453429719112414662767260662417897278); + DK(KP521108558, +0.521108558113202722944698153526659300680427422); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { + E Tf, Tq, Tt, Tu; + { + E T1, Td, Th, Te, Tg, T2, Ts, TK, TB, TT, Tj, T6, T3, T4, T5; + E Tr; + T1 = Cr[0]; + Td = Ci[WS(csi, 3)]; + Th = Ci[WS(csi, 5)]; + Te = Ci[WS(csi, 2)]; + Tf = Ci[WS(csi, 4)]; + Tg = Ci[WS(csi, 1)]; + Tr = FMA(KP521108558, Td, Th); + T2 = Cr[WS(csr, 1)]; + { + E TJ, TA, TS, Ti; + TJ = FMA(KP521108558, Tf, Td); + TA = FNMS(KP521108558, Te, Tf); + TS = FMS(KP521108558, Tg, Te); + Ti = FMA(KP521108558, Th, Tg); + Ts = FNMS(KP715370323, Tr, Te); + TK = FMA(KP715370323, TJ, Tg); + TB = FMA(KP715370323, TA, Th); + TT = FMA(KP715370323, TS, Td); + Tj = FMA(KP715370323, Ti, Tf); + T6 = Cr[WS(csr, 5)]; + } + T3 = Cr[WS(csr, 2)]; + T4 = Cr[WS(csr, 3)]; + T5 = Cr[WS(csr, 4)]; + { + E TG, Tx, To, Tl, Tb, TU, TQ, TP, Ta; + { + E Tk, TE, Tv, T8; + Tk = FMA(KP830830026, Tj, Te); + TE = FNMS(KP342584725, T3, T6); + Tv = FNMS(KP342584725, T2, T4); + T8 = FNMS(KP342584725, T4, T3); + { + E T7, Tm, TN, TF; + T7 = T2 + T3 + T4 + T5 + T6; + Tm = FNMS(KP342584725, T5, T2); + TN = FNMS(KP342584725, T6, T5); + TF = FNMS(KP634356270, TE, T2); + { + E Tw, T9, Tn, TO; + Tw = FNMS(KP634356270, Tv, T6); + T9 = FNMS(KP634356270, T8, T5); + R0[0] = FMA(KP2_000000000, T7, T1); + Tn = FNMS(KP634356270, Tm, T3); + TO = FNMS(KP634356270, TN, T4); + TG = FNMS(KP778434453, TF, T4); + Tx = FNMS(KP778434453, Tw, T5); + Ta = FNMS(KP778434453, T9, T2); + To = FNMS(KP778434453, Tn, T6); + TP = FNMS(KP778434453, TO, T3); + Tl = FMA(KP918985947, Tk, Td); + } + } + } + Tb = FNMS(KP876768831, Ta, T6); + TU = FNMS(KP830830026, TT, Tf); + TQ = FNMS(KP876768831, TP, T2); + { + E TI, TL, Ty, TC; + { + E Tc, TV, TR, TH; + TH = FNMS(KP876768831, TG, T5); + Tc = FNMS(KP1_918985947, Tb, T1); + TV = FNMS(KP918985947, TU, Th); + TR = FNMS(KP1_918985947, TQ, T1); + TI = FNMS(KP1_918985947, TH, T1); + R0[WS(rs, 5)] = FMA(KP1_979642883, Tl, Tc); + R1[0] = FNMS(KP1_979642883, Tl, Tc); + R0[WS(rs, 3)] = FMA(KP1_979642883, TV, TR); + R1[WS(rs, 2)] = FNMS(KP1_979642883, TV, TR); + TL = FNMS(KP830830026, TK, Th); + } + Ty = FNMS(KP876768831, Tx, T3); + TC = FNMS(KP830830026, TB, Td); + { + E TM, Tz, TD, Tp; + Tp = FNMS(KP876768831, To, T4); + TM = FMA(KP918985947, TL, Te); + Tz = FNMS(KP1_918985947, Ty, T1); + TD = FNMS(KP918985947, TC, Tg); + Tq = FNMS(KP1_918985947, Tp, T1); + R0[WS(rs, 2)] = FMA(KP1_979642883, TM, TI); + R1[WS(rs, 3)] = FNMS(KP1_979642883, TM, TI); + R0[WS(rs, 4)] = FMA(KP1_979642883, TD, Tz); + R1[WS(rs, 1)] = FNMS(KP1_979642883, TD, Tz); + Tt = FMA(KP830830026, Ts, Tg); + } + } + } + } + Tu = FNMS(KP918985947, Tt, Tf); + R0[WS(rs, 1)] = FMA(KP1_979642883, Tu, Tq); + R1[WS(rs, 4)] = FNMS(KP1_979642883, Tu, Tq); + } + } +} + +static const kr2c_desc desc = { 11, "r2cb_11", {4, 0, 56, 0}, &GENUS }; + +void X(codelet_r2cb_11) (planner *p) { + X(kr2c_register) (p, r2cb_11, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 11 -name r2cb_11 -include r2cb.h */ + +/* + * This function contains 60 FP additions, 51 FP multiplications, + * (or, 19 additions, 10 multiplications, 41 fused multiply/add), + * 33 stack variables, 11 constants, and 22 memory accesses + */ +#include "r2cb.h" + +static void r2cb_11(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_918985947, +1.918985947228994779780736114132655398124909697); + DK(KP1_309721467, +1.309721467890570128113850144932587106367582399); + DK(KP284629676, +0.284629676546570280887585337232739337582102722); + DK(KP830830026, +0.830830026003772851058548298459246407048009821); + DK(KP1_682507065, +1.682507065662362337723623297838735435026584997); + DK(KP563465113, +0.563465113682859395422835830693233798071555798); + DK(KP1_511499148, +1.511499148708516567548071687944688840359434890); + DK(KP1_979642883, +1.979642883761865464752184075553437574753038744); + DK(KP1_819263990, +1.819263990709036742823430766158056920120482102); + DK(KP1_081281634, +1.081281634911195164215271908637383390863541216); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(44, rs), MAKE_VOLATILE_STRIDE(44, csr), MAKE_VOLATILE_STRIDE(44, csi)) { + E Td, Tl, Tf, Th, Tj, T1, T2, T6, T5, T4, T3, T7, Tk, Te, Tg; + E Ti; + { + E T8, Tc, T9, Ta, Tb; + T8 = Ci[WS(csi, 2)]; + Tc = Ci[WS(csi, 1)]; + T9 = Ci[WS(csi, 4)]; + Ta = Ci[WS(csi, 5)]; + Tb = Ci[WS(csi, 3)]; + Td = FMA(KP1_081281634, T8, KP1_819263990 * T9) + FNMA(KP1_979642883, Ta, KP1_511499148 * Tb) - (KP563465113 * Tc); + Tl = FMA(KP1_979642883, T8, KP1_819263990 * Ta) + FNMA(KP563465113, T9, KP1_081281634 * Tb) - (KP1_511499148 * Tc); + Tf = FMA(KP563465113, T8, KP1_819263990 * Tb) + FNMA(KP1_511499148, Ta, KP1_081281634 * T9) - (KP1_979642883 * Tc); + Th = FMA(KP1_081281634, Tc, KP1_819263990 * T8) + FMA(KP1_979642883, Tb, KP1_511499148 * T9) + (KP563465113 * Ta); + Tj = FMA(KP563465113, Tb, KP1_979642883 * T9) + FNMS(KP1_511499148, T8, KP1_081281634 * Ta) - (KP1_819263990 * Tc); + } + T1 = Cr[0]; + T2 = Cr[WS(csr, 1)]; + T6 = Cr[WS(csr, 5)]; + T5 = Cr[WS(csr, 4)]; + T4 = Cr[WS(csr, 3)]; + T3 = Cr[WS(csr, 2)]; + T7 = FMA(KP1_682507065, T3, T1) + FNMS(KP284629676, T6, KP830830026 * T5) + FNMA(KP1_309721467, T4, KP1_918985947 * T2); + Tk = FMA(KP1_682507065, T4, T1) + FNMS(KP1_918985947, T5, KP830830026 * T6) + FNMA(KP284629676, T3, KP1_309721467 * T2); + Te = FMA(KP830830026, T4, T1) + FNMS(KP1_309721467, T6, KP1_682507065 * T5) + FNMA(KP1_918985947, T3, KP284629676 * T2); + Tg = FMA(KP1_682507065, T2, T1) + FNMS(KP1_918985947, T6, KP830830026 * T3) + FNMA(KP1_309721467, T5, KP284629676 * T4); + Ti = FMA(KP830830026, T2, T1) + FNMS(KP284629676, T5, KP1_682507065 * T6) + FNMA(KP1_918985947, T4, KP1_309721467 * T3); + R0[WS(rs, 3)] = T7 - Td; + R0[WS(rs, 4)] = Te - Tf; + R0[WS(rs, 2)] = Tk + Tl; + R1[WS(rs, 2)] = T7 + Td; + R1[WS(rs, 3)] = Tk - Tl; + R0[WS(rs, 1)] = Ti + Tj; + R1[WS(rs, 1)] = Te + Tf; + R0[WS(rs, 5)] = Tg + Th; + R1[0] = Tg - Th; + R1[WS(rs, 4)] = Ti - Tj; + R0[0] = FMA(KP2_000000000, T2 + T3 + T4 + T5 + T6, T1); + } + } +} + +static const kr2c_desc desc = { 11, "r2cb_11", {19, 10, 41, 0}, &GENUS }; + +void X(codelet_r2cb_11) (planner *p) { + X(kr2c_register) (p, r2cb_11, &desc); +} + +#endif /* HAVE_FMA */