Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_10.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_10.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,208 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:07 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */ + +/* + * This function contains 34 FP additions, 20 FP multiplications, + * (or, 14 additions, 0 multiplications, 20 fused multiply/add), + * 30 stack variables, 5 constants, and 20 memory accesses + */ +#include "r2cb.h" + +static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); + DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { + E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9; + { + E Tu, Tn, T7, Tv, Tk, T8; + { + E T1, T2, Tl, Tm; + T1 = Cr[0]; + T2 = Cr[WS(csr, 5)]; + Tl = Ci[WS(csi, 2)]; + Tm = Ci[WS(csi, 3)]; + { + E Ti, Tj, T4, T5; + Ti = Ci[WS(csi, 4)]; + Tb = T1 + T2; + T3 = T1 - T2; + Tu = Tl + Tm; + Tn = Tl - Tm; + Tj = Ci[WS(csi, 1)]; + T4 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 3)]; + T7 = Cr[WS(csr, 4)]; + Tv = Ti + Tj; + Tk = Ti - Tj; + Tc = T4 + T5; + T6 = T4 - T5; + T8 = Cr[WS(csr, 1)]; + } + } + Tq = FMA(KP618033988, Tk, Tn); + To = FNMS(KP618033988, Tn, Tk); + Ty = FNMS(KP618033988, Tu, Tv); + Tw = FMA(KP618033988, Tv, Tu); + Td = T7 + T8; + T9 = T7 - T8; + } + { + E Te, Tg, Ta, Ts, Tf, Tr; + Te = Tc + Td; + Tg = Tc - Td; + Ta = T6 + T9; + Ts = T6 - T9; + Tf = FNMS(KP500000000, Te, Tb); + R0[0] = FMA(KP2_000000000, Te, Tb); + Tr = FNMS(KP500000000, Ta, T3); + R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); + { + E Th, Tp, Tt, Tx; + Th = FNMS(KP1_118033988, Tg, Tf); + Tp = FMA(KP1_118033988, Tg, Tf); + Tt = FMA(KP1_118033988, Ts, Tr); + Tx = FNMS(KP1_118033988, Ts, Tr); + R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp); + R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp); + R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th); + R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th); + R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx); + R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx); + R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt); + R1[0] = FNMS(KP1_902113032, Tw, Tt); + } + } + } + } +} + +static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS }; + +void X(codelet_r2cb_10) (planner *p) { + X(kr2c_register) (p, r2cb_10, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */ + +/* + * This function contains 34 FP additions, 14 FP multiplications, + * (or, 26 additions, 6 multiplications, 8 fused multiply/add), + * 26 stack variables, 5 constants, and 20 memory accesses + */ +#include "r2cb.h" + +static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); + DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { + E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj; + { + E T1, T2, Tl, Tm; + T1 = Cr[0]; + T2 = Cr[WS(csr, 5)]; + T3 = T1 - T2; + Tb = T1 + T2; + Tl = Ci[WS(csi, 4)]; + Tm = Ci[WS(csi, 1)]; + Tn = Tl - Tm; + Tv = Tl + Tm; + } + Ti = Ci[WS(csi, 2)]; + Tj = Ci[WS(csi, 3)]; + Tk = Ti - Tj; + Tu = Ti + Tj; + { + E T6, Tc, T9, Td; + { + E T4, T5, T7, T8; + T4 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 3)]; + T6 = T4 - T5; + Tc = T4 + T5; + T7 = Cr[WS(csr, 4)]; + T8 = Cr[WS(csr, 1)]; + T9 = T7 - T8; + Td = T7 + T8; + } + Ta = T6 + T9; + Ts = KP1_118033988 * (T6 - T9); + Te = Tc + Td; + Tg = KP1_118033988 * (Tc - Td); + } + R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3); + R0[0] = FMA(KP2_000000000, Te, Tb); + { + E To, Tq, Th, Tp, Tf; + To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk); + Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn); + Tf = FNMS(KP500000000, Te, Tb); + Th = Tf - Tg; + Tp = Tg + Tf; + R0[WS(rs, 1)] = Th - To; + R0[WS(rs, 2)] = Tp + Tq; + R0[WS(rs, 4)] = Th + To; + R0[WS(rs, 3)] = Tp - Tq; + } + { + E Tw, Ty, Tt, Tx, Tr; + Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu); + Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv); + Tr = FNMS(KP500000000, Ta, T3); + Tt = Tr - Ts; + Tx = Ts + Tr; + R1[WS(rs, 3)] = Tt - Tw; + R1[WS(rs, 4)] = Tx + Ty; + R1[WS(rs, 1)] = Tt + Tw; + R1[0] = Tx - Ty; + } + } + } +} + +static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS }; + +void X(codelet_r2cb_10) (planner *p) { + X(kr2c_register) (p, r2cb_10, &desc); +} + +#endif /* HAVE_FMA */