diff src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb_8.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,373 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:41:52 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
+
+/*
+ * This function contains 66 FP additions, 36 FP multiplications,
+ * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
+ * 52 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cb.h"
+
+static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E Tw, TH, Tf, Ty, Tx, TI;
+	       {
+		    E TV, TD, T1i, T7, T1b, T1n, TQ, Tk, Tp, TE, Te, T1o, T1e, T1j, Tu;
+		    E TF;
+		    {
+			 E T4, Tg, T3, T19, TC, T5, Th, Ti;
+			 {
+			      E T1, T2, TA, TB;
+			      T1 = Rp[0];
+			      T2 = Rm[WS(rs, 3)];
+			      TA = Ip[0];
+			      TB = Im[WS(rs, 3)];
+			      T4 = Rp[WS(rs, 2)];
+			      Tg = T1 - T2;
+			      T3 = T1 + T2;
+			      T19 = TA - TB;
+			      TC = TA + TB;
+			      T5 = Rm[WS(rs, 1)];
+			      Th = Ip[WS(rs, 2)];
+			      Ti = Im[WS(rs, 1)];
+			 }
+			 {
+			      E Tb, Tl, Ta, T1c, To, Tc, Tr, Ts;
+			      {
+				   E T8, T9, Tm, Tn;
+				   T8 = Rp[WS(rs, 1)];
+				   {
+					E Tz, T6, T1a, Tj;
+					Tz = T4 - T5;
+					T6 = T4 + T5;
+					T1a = Th - Ti;
+					Tj = Th + Ti;
+					TV = TC - Tz;
+					TD = Tz + TC;
+					T1i = T3 - T6;
+					T7 = T3 + T6;
+					T1b = T19 + T1a;
+					T1n = T19 - T1a;
+					TQ = Tg + Tj;
+					Tk = Tg - Tj;
+					T9 = Rm[WS(rs, 2)];
+				   }
+				   Tm = Ip[WS(rs, 1)];
+				   Tn = Im[WS(rs, 2)];
+				   Tb = Rm[0];
+				   Tl = T8 - T9;
+				   Ta = T8 + T9;
+				   T1c = Tm - Tn;
+				   To = Tm + Tn;
+				   Tc = Rp[WS(rs, 3)];
+				   Tr = Ip[WS(rs, 3)];
+				   Ts = Im[0];
+			      }
+			      {
+				   E Tq, Td, T1d, Tt;
+				   Tp = Tl - To;
+				   TE = Tl + To;
+				   Tq = Tb - Tc;
+				   Td = Tb + Tc;
+				   T1d = Tr - Ts;
+				   Tt = Tr + Ts;
+				   Te = Ta + Td;
+				   T1o = Ta - Td;
+				   T1e = T1c + T1d;
+				   T1j = T1d - T1c;
+				   Tu = Tq - Tt;
+				   TF = Tq + Tt;
+			      }
+			 }
+		    }
+		    {
+			 E TG, Tv, T10, T13, T1s, T1k, T1p, T1v, T1u, T1w, T1t, TR, TW;
+			 Rp[0] = T7 + Te;
+			 Rm[0] = T1b + T1e;
+			 TG = TE - TF;
+			 TR = TE + TF;
+			 TW = Tp - Tu;
+			 Tv = Tp + Tu;
+			 {
+			      E TP, TS, TX, TU, T1r, TT, TY;
+			      TP = W[4];
+			      T10 = FMA(KP707106781, TR, TQ);
+			      TS = FNMS(KP707106781, TR, TQ);
+			      TX = FMA(KP707106781, TW, TV);
+			      T13 = FNMS(KP707106781, TW, TV);
+			      TU = W[5];
+			      T1s = T1i + T1j;
+			      T1k = T1i - T1j;
+			      TT = TP * TS;
+			      TY = TP * TX;
+			      T1p = T1n - T1o;
+			      T1v = T1o + T1n;
+			      T1r = W[2];
+			      Ip[WS(rs, 1)] = FNMS(TU, TX, TT);
+			      Im[WS(rs, 1)] = FMA(TU, TS, TY);
+			      T1u = W[3];
+			      T1w = T1r * T1v;
+			      T1t = T1r * T1s;
+			 }
+			 {
+			      E T1f, T15, T18, T17, T1g, T1h, T1m;
+			      {
+				   E TZ, T12, T16, T14, T11;
+				   Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w);
+				   Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t);
+				   TZ = W[12];
+				   T12 = W[13];
+				   T1f = T1b - T1e;
+				   T16 = T7 - Te;
+				   T14 = TZ * T13;
+				   T11 = TZ * T10;
+				   T15 = W[6];
+				   T18 = W[7];
+				   Im[WS(rs, 3)] = FMA(T12, T10, T14);
+				   Ip[WS(rs, 3)] = FNMS(T12, T13, T11);
+				   T17 = T15 * T16;
+				   T1g = T18 * T16;
+			      }
+			      Rp[WS(rs, 2)] = FNMS(T18, T1f, T17);
+			      Rm[WS(rs, 2)] = FMA(T15, T1f, T1g);
+			      T1h = W[10];
+			      T1m = W[11];
+			      {
+				   E TN, TJ, TM, TL, TO, TK, T1q, T1l;
+				   Tw = FNMS(KP707106781, Tv, Tk);
+				   TK = FMA(KP707106781, Tv, Tk);
+				   T1q = T1h * T1p;
+				   T1l = T1h * T1k;
+				   TN = FMA(KP707106781, TG, TD);
+				   TH = FNMS(KP707106781, TG, TD);
+				   Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q);
+				   Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l);
+				   TJ = W[0];
+				   TM = W[1];
+				   Tf = W[8];
+				   TL = TJ * TK;
+				   TO = TM * TK;
+				   Ty = W[9];
+				   Tx = Tf * Tw;
+				   Ip[0] = FNMS(TM, TN, TL);
+				   Im[0] = FMA(TJ, TN, TO);
+			      }
+			 }
+		    }
+	       }
+	       Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx);
+	       TI = Ty * Tw;
+	       Im[WS(rs, 2)] = FMA(Tf, TH, TI);
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 8},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {44, 14, 22, 0} };
+
+void X(codelet_hc2cb_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h */
+
+/*
+ * This function contains 66 FP additions, 32 FP multiplications,
+ * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
+ * 30 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cb.h"
+
+static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;
+	       E TD;
+	       {
+		    E T3, TK, Tk, TX, T6, TW, Tn, TL;
+		    {
+			 E T1, T2, Ti, Tj;
+			 T1 = Rp[0];
+			 T2 = Rm[WS(rs, 3)];
+			 T3 = T1 + T2;
+			 TK = T1 - T2;
+			 Ti = Ip[0];
+			 Tj = Im[WS(rs, 3)];
+			 Tk = Ti - Tj;
+			 TX = Ti + Tj;
+		    }
+		    {
+			 E T4, T5, Tl, Tm;
+			 T4 = Rp[WS(rs, 2)];
+			 T5 = Rm[WS(rs, 1)];
+			 T6 = T4 + T5;
+			 TW = T4 - T5;
+			 Tl = Ip[WS(rs, 2)];
+			 Tm = Im[WS(rs, 1)];
+			 Tn = Tl - Tm;
+			 TL = Tl + Tm;
+		    }
+		    T7 = T3 + T6;
+		    T18 = TK + TL;
+		    T1c = TX - TW;
+		    To = Tk + Tn;
+		    Ty = T3 - T6;
+		    TM = TK - TL;
+		    TY = TW + TX;
+		    TC = Tk - Tn;
+	       }
+	       {
+		    E Ta, TN, Tr, TO, Td, TQ, Tu, TR;
+		    {
+			 E T8, T9, Tp, Tq;
+			 T8 = Rp[WS(rs, 1)];
+			 T9 = Rm[WS(rs, 2)];
+			 Ta = T8 + T9;
+			 TN = T8 - T9;
+			 Tp = Ip[WS(rs, 1)];
+			 Tq = Im[WS(rs, 2)];
+			 Tr = Tp - Tq;
+			 TO = Tp + Tq;
+		    }
+		    {
+			 E Tb, Tc, Ts, Tt;
+			 Tb = Rm[0];
+			 Tc = Rp[WS(rs, 3)];
+			 Td = Tb + Tc;
+			 TQ = Tb - Tc;
+			 Ts = Ip[WS(rs, 3)];
+			 Tt = Im[0];
+			 Tu = Ts - Tt;
+			 TR = Ts + Tt;
+		    }
+		    Te = Ta + Td;
+		    TZ = TN + TO;
+		    T10 = TQ + TR;
+		    Tv = Tr + Tu;
+		    Tz = Tu - Tr;
+		    TP = TN - TO;
+		    TS = TQ - TR;
+		    TD = Ta - Td;
+	       }
+	       Rp[0] = T7 + Te;
+	       Rm[0] = To + Tv;
+	       {
+		    E Tg, Tw, Tf, Th;
+		    Tg = T7 - Te;
+		    Tw = To - Tv;
+		    Tf = W[6];
+		    Th = W[7];
+		    Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg);
+		    Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw);
+	       }
+	       {
+		    E TG, TI, TF, TH;
+		    TG = Ty + Tz;
+		    TI = TD + TC;
+		    TF = W[2];
+		    TH = W[3];
+		    Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG);
+		    Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG);
+	       }
+	       {
+		    E TA, TE, Tx, TB;
+		    TA = Ty - Tz;
+		    TE = TC - TD;
+		    Tx = W[10];
+		    TB = W[11];
+		    Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA);
+		    Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA);
+	       }
+	       {
+		    E T1a, T1g, T1e, T1i, T19, T1d;
+		    T19 = KP707106781 * (TZ + T10);
+		    T1a = T18 - T19;
+		    T1g = T18 + T19;
+		    T1d = KP707106781 * (TP - TS);
+		    T1e = T1c + T1d;
+		    T1i = T1c - T1d;
+		    {
+			 E T17, T1b, T1f, T1h;
+			 T17 = W[4];
+			 T1b = W[5];
+			 Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a);
+			 Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a);
+			 T1f = W[12];
+			 T1h = W[13];
+			 Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g);
+			 Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g);
+		    }
+	       }
+	       {
+		    E TU, T14, T12, T16, TT, T11;
+		    TT = KP707106781 * (TP + TS);
+		    TU = TM - TT;
+		    T14 = TM + TT;
+		    T11 = KP707106781 * (TZ - T10);
+		    T12 = TY - T11;
+		    T16 = TY + T11;
+		    {
+			 E TJ, TV, T13, T15;
+			 TJ = W[8];
+			 TV = W[9];
+			 Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU);
+			 Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12);
+			 T13 = W[0];
+			 T15 = W[1];
+			 Ip[0] = FNMS(T15, T16, T13 * T14);
+			 Im[0] = FMA(T15, T14, T13 * T16);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 8},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {52, 18, 14, 0} };
+
+void X(codelet_hc2cb_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);
+}
+#endif				/* HAVE_FMA */