diff src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_8.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb2_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,384 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:41:57 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
+
+/*
+ * This function contains 74 FP additions, 50 FP multiplications,
+ * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
+ * 64 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cb.h"
+
+static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E Tf, Ti, TK, Tq, TH, TT, TX, TW, TY, TU, TI;
+	       {
+		    E Tg, Tl, Tp, Th, T1n, T1t, Tj;
+		    Tf = W[0];
+		    Tg = W[2];
+		    Tl = W[4];
+		    Tp = W[5];
+		    Ti = W[1];
+		    Th = Tf * Tg;
+		    T1n = Tf * Tl;
+		    T1t = Tf * Tp;
+		    Tj = W[3];
+		    {
+			 E T1o, T1u, Tk, T1b, To, T1e, T13, TP, T1p, T7, T1h, T1v, TZ, Tv, T1i;
+			 E TB, TA, TQ, Te, T1w, TE, T1j;
+			 {
+			      E Tr, T3, Ts, T1f, TO, TL, T6, Tt;
+			      {
+				   E TM, TN, T4, T5;
+				   {
+					E T1, Tn, T2, TJ, Tm;
+					T1 = Rp[0];
+					T1o = FMA(Ti, Tp, T1n);
+					T1u = FNMS(Ti, Tl, T1t);
+					Tk = FMA(Ti, Tj, Th);
+					T1b = FNMS(Ti, Tj, Th);
+					Tn = Tf * Tj;
+					T2 = Rm[WS(rs, 3)];
+					TM = Ip[0];
+					TJ = Tk * Tp;
+					Tm = Tk * Tl;
+					To = FNMS(Ti, Tg, Tn);
+					T1e = FMA(Ti, Tg, Tn);
+					Tr = T1 - T2;
+					T3 = T1 + T2;
+					TK = FNMS(To, Tl, TJ);
+					Tq = FMA(To, Tp, Tm);
+					TN = Im[WS(rs, 3)];
+				   }
+				   T4 = Rp[WS(rs, 2)];
+				   T5 = Rm[WS(rs, 1)];
+				   Ts = Ip[WS(rs, 2)];
+				   T1f = TM - TN;
+				   TO = TM + TN;
+				   TL = T4 - T5;
+				   T6 = T4 + T5;
+				   Tt = Im[WS(rs, 1)];
+			      }
+			      {
+				   E Tw, Ta, TC, Tz, Td, TD;
+				   {
+					E Tx, Ty, Tb, Tc;
+					{
+					     E T8, T1g, Tu, T9;
+					     T8 = Rp[WS(rs, 1)];
+					     T13 = TO - TL;
+					     TP = TL + TO;
+					     T1p = T3 - T6;
+					     T7 = T3 + T6;
+					     T1g = Ts - Tt;
+					     Tu = Ts + Tt;
+					     T9 = Rm[WS(rs, 2)];
+					     Tx = Ip[WS(rs, 1)];
+					     T1h = T1f + T1g;
+					     T1v = T1f - T1g;
+					     TZ = Tr + Tu;
+					     Tv = Tr - Tu;
+					     Tw = T8 - T9;
+					     Ta = T8 + T9;
+					     Ty = Im[WS(rs, 2)];
+					}
+					Tb = Rm[0];
+					Tc = Rp[WS(rs, 3)];
+					TC = Ip[WS(rs, 3)];
+					T1i = Tx - Ty;
+					Tz = Tx + Ty;
+					TB = Tb - Tc;
+					Td = Tb + Tc;
+					TD = Im[0];
+				   }
+				   TA = Tw - Tz;
+				   TQ = Tw + Tz;
+				   Te = Ta + Td;
+				   T1w = Ta - Td;
+				   TE = TC + TD;
+				   T1j = TC - TD;
+			      }
+			 }
+			 {
+			      E T1x, T1k, T1r, TG, TS, T19, T15, T17, T11, T16, T12;
+			      {
+				   E T1B, T1z, T10, T1A, T1C;
+				   T1x = T1v - T1w;
+				   T1B = T1w + T1v;
+				   Rp[0] = T7 + Te;
+				   {
+					E T1q, TR, TF, T14;
+					T1k = T1i + T1j;
+					T1q = T1j - T1i;
+					TR = TB + TE;
+					TF = TB - TE;
+					T1r = T1p - T1q;
+					T1z = T1p + T1q;
+					Rm[0] = T1h + T1k;
+					TG = TA + TF;
+					T14 = TA - TF;
+					TS = TQ - TR;
+					T10 = TQ + TR;
+					T1A = Tk * T1z;
+					T19 = FNMS(KP707106781, T14, T13);
+					T15 = FMA(KP707106781, T14, T13);
+					T1C = Tk * T1B;
+				   }
+				   T17 = FMA(KP707106781, T10, TZ);
+				   T11 = FNMS(KP707106781, T10, TZ);
+				   Rp[WS(rs, 1)] = FNMS(To, T1B, T1A);
+				   T16 = Tg * T15;
+				   Rm[WS(rs, 1)] = FMA(To, T1z, T1C);
+			      }
+			      T12 = Tg * T11;
+			      {
+				   E T1l, T1a, T1c, T18;
+				   Im[WS(rs, 1)] = FMA(Tj, T11, T16);
+				   Ip[WS(rs, 1)] = FNMS(Tj, T15, T12);
+				   T18 = Tl * T17;
+				   T1l = T1h - T1k;
+				   T1a = Tl * T19;
+				   T1c = T7 - Te;
+				   Ip[WS(rs, 3)] = FNMS(Tp, T19, T18);
+				   {
+					E T1s, T1m, T1d, T1y, TV;
+					Im[WS(rs, 3)] = FMA(Tp, T17, T1a);
+					T1m = T1e * T1c;
+					T1d = T1b * T1c;
+					T1s = T1o * T1r;
+					Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m);
+					Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d);
+					Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s);
+					T1y = T1o * T1x;
+					TV = FMA(KP707106781, TG, Tv);
+					TH = FNMS(KP707106781, TG, Tv);
+					TT = FNMS(KP707106781, TS, TP);
+					TX = FMA(KP707106781, TS, TP);
+					Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y);
+					TW = Tf * TV;
+					TY = Ti * TV;
+				   }
+			      }
+			 }
+		    }
+	       }
+	       Ip[0] = FNMS(Ti, TX, TW);
+	       Im[0] = FMA(Tf, TX, TY);
+	       TU = TK * TH;
+	       TI = Tq * TH;
+	       Im[WS(rs, 2)] = FMA(Tq, TT, TU);
+	       Ip[WS(rs, 2)] = FNMS(TK, TT, TI);
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {44, 20, 30, 0} };
+
+void X(codelet_hc2cb2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include hc2cb.h */
+
+/*
+ * This function contains 74 FP additions, 44 FP multiplications,
+ * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
+ * 46 stack variables, 1 constants, and 32 memory accesses
+ */
+#include "hc2cb.h"
+
+static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
+	       E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT;
+	       {
+		    E Th, To, Tk, Tn;
+		    Tf = W[0];
+		    Ti = W[1];
+		    Tg = W[2];
+		    Tj = W[3];
+		    Th = Tf * Tg;
+		    To = Ti * Tg;
+		    Tk = Ti * Tj;
+		    Tn = Tf * Tj;
+		    Tl = Th - Tk;
+		    Tp = Tn + To;
+		    TP = Th + Tk;
+		    TR = Tn - To;
+		    TF = W[4];
+		    TG = W[5];
+		    TH = FMA(Tf, TF, Ti * TG);
+		    T15 = FNMS(TR, TF, TP * TG);
+		    TL = FNMS(Ti, TF, Tf * TG);
+		    TT = FMA(TP, TF, TR * TG);
+	       }
+	       {
+		    E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12;
+		    E TN, Tm, TE;
+		    {
+			 E T3, TU, Ts, T17, T6, T16, Tv, TV;
+			 {
+			      E T1, T2, Tq, Tr;
+			      T1 = Rp[0];
+			      T2 = Rm[WS(rs, 3)];
+			      T3 = T1 + T2;
+			      TU = T1 - T2;
+			      Tq = Ip[0];
+			      Tr = Im[WS(rs, 3)];
+			      Ts = Tq - Tr;
+			      T17 = Tq + Tr;
+			 }
+			 {
+			      E T4, T5, Tt, Tu;
+			      T4 = Rp[WS(rs, 2)];
+			      T5 = Rm[WS(rs, 1)];
+			      T6 = T4 + T5;
+			      T16 = T4 - T5;
+			      Tt = Ip[WS(rs, 2)];
+			      Tu = Im[WS(rs, 1)];
+			      Tv = Tt - Tu;
+			      TV = Tt + Tu;
+			 }
+			 T7 = T3 + T6;
+			 T1f = TU + TV;
+			 T1i = T17 - T16;
+			 Tw = Ts + Tv;
+			 TI = T3 - T6;
+			 TW = TU - TV;
+			 T18 = T16 + T17;
+			 TM = Ts - Tv;
+		    }
+		    {
+			 E Ta, TX, Tz, TY, Td, T10, TC, T11;
+			 {
+			      E T8, T9, Tx, Ty;
+			      T8 = Rp[WS(rs, 1)];
+			      T9 = Rm[WS(rs, 2)];
+			      Ta = T8 + T9;
+			      TX = T8 - T9;
+			      Tx = Ip[WS(rs, 1)];
+			      Ty = Im[WS(rs, 2)];
+			      Tz = Tx - Ty;
+			      TY = Tx + Ty;
+			 }
+			 {
+			      E Tb, Tc, TA, TB;
+			      Tb = Rm[0];
+			      Tc = Rp[WS(rs, 3)];
+			      Td = Tb + Tc;
+			      T10 = Tb - Tc;
+			      TA = Ip[WS(rs, 3)];
+			      TB = Im[0];
+			      TC = TA - TB;
+			      T11 = TA + TB;
+			 }
+			 Te = Ta + Td;
+			 T19 = TX + TY;
+			 T1a = T10 + T11;
+			 TD = Tz + TC;
+			 TJ = TC - Tz;
+			 TZ = TX - TY;
+			 T12 = T10 - T11;
+			 TN = Ta - Td;
+		    }
+		    Rp[0] = T7 + Te;
+		    Rm[0] = Tw + TD;
+		    Tm = T7 - Te;
+		    TE = Tw - TD;
+		    Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm);
+		    Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE);
+		    {
+			 E TQ, TS, TK, TO;
+			 TQ = TI + TJ;
+			 TS = TN + TM;
+			 Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
+			 Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
+			 TK = TI - TJ;
+			 TO = TM - TN;
+			 Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK);
+			 Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK);
+		    }
+		    {
+			 E T1h, T1l, T1k, T1m, T1g, T1j;
+			 T1g = KP707106781 * (T19 + T1a);
+			 T1h = T1f - T1g;
+			 T1l = T1f + T1g;
+			 T1j = KP707106781 * (TZ - T12);
+			 T1k = T1i + T1j;
+			 T1m = T1i - T1j;
+			 Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h);
+			 Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h);
+			 Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l);
+			 Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l);
+		    }
+		    {
+			 E T14, T1d, T1c, T1e, T13, T1b;
+			 T13 = KP707106781 * (TZ + T12);
+			 T14 = TW - T13;
+			 T1d = TW + T13;
+			 T1b = KP707106781 * (T19 - T1a);
+			 T1c = T18 - T1b;
+			 T1e = T18 + T1b;
+			 Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14);
+			 Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c);
+			 Ip[0] = FNMS(Ti, T1e, Tf * T1d);
+			 Im[0] = FMA(Ti, T1d, Tf * T1e);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_CEXP, 1, 1},
+     {TW_CEXP, 1, 3},
+     {TW_CEXP, 1, 7},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, {56, 26, 18, 0} };
+
+void X(codelet_hc2cb2_8) (planner *p) {
+     X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT);
+}
+#endif				/* HAVE_FMA */