diff src/fftw-3.3.3/doc/html/Transposed-distributions.html @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/doc/html/Transposed-distributions.html	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,129 @@
+<html lang="en">
+<head>
+<title>Transposed distributions - FFTW 3.3.3</title>
+<meta http-equiv="Content-Type" content="text/html">
+<meta name="description" content="FFTW 3.3.3">
+<meta name="generator" content="makeinfo 4.13">
+<link title="Top" rel="start" href="index.html#Top">
+<link rel="up" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
+<link rel="prev" href="Load-balancing.html#Load-balancing" title="Load balancing">
+<link rel="next" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" title="One-dimensional distributions">
+<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
+<!--
+This manual is for FFTW
+(version 3.3.3, 25 November 2012).
+
+Copyright (C) 2003 Matteo Frigo.
+
+Copyright (C) 2003 Massachusetts Institute of Technology.
+
+     Permission is granted to make and distribute verbatim copies of
+     this manual provided the copyright notice and this permission
+     notice are preserved on all copies.
+
+     Permission is granted to copy and distribute modified versions of
+     this manual under the conditions for verbatim copying, provided
+     that the entire resulting derived work is distributed under the
+     terms of a permission notice identical to this one.
+
+     Permission is granted to copy and distribute translations of this
+     manual into another language, under the above conditions for
+     modified versions, except that this permission notice may be
+     stated in a translation approved by the Free Software Foundation.
+   -->
+<meta http-equiv="Content-Style-Type" content="text/css">
+<style type="text/css"><!--
+  pre.display { font-family:inherit }
+  pre.format  { font-family:inherit }
+  pre.smalldisplay { font-family:inherit; font-size:smaller }
+  pre.smallformat  { font-family:inherit; font-size:smaller }
+  pre.smallexample { font-size:smaller }
+  pre.smalllisp    { font-size:smaller }
+  span.sc    { font-variant:small-caps }
+  span.roman { font-family:serif; font-weight:normal; } 
+  span.sansserif { font-family:sans-serif; font-weight:normal; } 
+--></style>
+</head>
+<body>
+<div class="node">
+<a name="Transposed-distributions"></a>
+<p>
+Next:&nbsp;<a rel="next" accesskey="n" href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>,
+Previous:&nbsp;<a rel="previous" accesskey="p" href="Load-balancing.html#Load-balancing">Load balancing</a>,
+Up:&nbsp;<a rel="up" accesskey="u" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>
+<hr>
+</div>
+
+<h4 class="subsection">6.4.3 Transposed distributions</h4>
+
+<p>Internally, FFTW's MPI transform algorithms work by first computing
+transforms of the data local to each process, then by globally
+<em>transposing</em> the data in some fashion to redistribute the data
+among the processes, transforming the new data local to each process,
+and transposing back.  For example, a two-dimensional <code>n0</code> by
+<code>n1</code> array, distributed across the <code>n0</code> dimension, is
+transformd by: (i) transforming the <code>n1</code> dimension, which are
+local to each process; (ii) transposing to an <code>n1</code> by <code>n0</code>
+array, distributed across the <code>n1</code> dimension; (iii) transforming
+the <code>n0</code> dimension, which is now local to each process; (iv)
+transposing back. 
+<a name="index-transpose-379"></a>
+
+   <p>However, in many applications it is acceptable to compute a
+multidimensional DFT whose results are produced in transposed order
+(e.g., <code>n1</code> by <code>n0</code> in two dimensions).  This provides a
+significant performance advantage, because it means that the final
+transposition step can be omitted.  FFTW supports this optimization,
+which you specify by passing the flag <code>FFTW_MPI_TRANSPOSED_OUT</code>
+to the planner routines.  To compute the inverse transform of
+transposed output, you specify <code>FFTW_MPI_TRANSPOSED_IN</code> to tell
+it that the input is transposed.  In this section, we explain how to
+interpret the output format of such a transform. 
+<a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-380"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-381"></a>
+
+   <p>Suppose you have are transforming multi-dimensional data with (at
+least two) dimensions n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub>.  As always, it is distributed along
+the first dimension n<sub>0</sub>.  Now, if we compute its DFT with the
+<code>FFTW_MPI_TRANSPOSED_OUT</code> flag, the resulting output data are stored
+with the first <em>two</em> dimensions transposed: n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>,
+distributed along the n<sub>1</sub> dimension.  Conversely, if we take the
+n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> data and transform it with the
+<code>FFTW_MPI_TRANSPOSED_IN</code> flag, then the format goes back to the
+original n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> array.
+
+   <p>There are two ways to find the portion of the transposed array that
+resides on the current process.  First, you can simply call the
+appropriate &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; function, passing n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> (the
+transposed dimensions).  This would mean calling the &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo;
+function twice, once for the transposed and once for the
+non-transposed dimensions.  Alternatively, you can call one of the
+&lsquo;<samp><span class="samp">local_size_transposed</span></samp>&rsquo; functions, which returns both the
+non-transposed and transposed data distribution from a single call. 
+For example, for a 3d transform with transposed output (or input), you
+might call:
+
+<pre class="example">     ptrdiff_t fftw_mpi_local_size_3d_transposed(
+                     ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, MPI_Comm comm,
+                     ptrdiff_t *local_n0, ptrdiff_t *local_0_start,
+                     ptrdiff_t *local_n1, ptrdiff_t *local_1_start);
+</pre>
+   <p><a name="index-fftw_005fmpi_005flocal_005fsize_005f3d_005ftransposed-382"></a>
+Here, <code>local_n0</code> and <code>local_0_start</code> give the size and
+starting index of the <code>n0</code> dimension for the
+<em>non</em>-transposed data, as in the previous sections.  For
+<em>transposed</em> data (e.g. the output for
+<code>FFTW_MPI_TRANSPOSED_OUT</code>), <code>local_n1</code> and
+<code>local_1_start</code> give the size and starting index of the <code>n1</code>
+dimension, which is the first dimension of the transposed data
+(<code>n1</code> by <code>n0</code> by <code>n2</code>).
+
+   <p>(Note that <code>FFTW_MPI_TRANSPOSED_IN</code> is completely equivalent to
+performing <code>FFTW_MPI_TRANSPOSED_OUT</code> and passing the first two
+dimensions to the planner in reverse order, or vice versa.  If you
+pass <em>both</em> the <code>FFTW_MPI_TRANSPOSED_IN</code> and
+<code>FFTW_MPI_TRANSPOSED_OUT</code> flags, it is equivalent to swapping the
+first two dimensions passed to the planner and passing <em>neither</em>
+flag.)
+
+   </body></html>
+