Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/simd/common/n1bv_13.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/simd/common/n1bv_13.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,406 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:37:02 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_notw_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 13 -name n1bv_13 -include n1b.h */ + +/* + * This function contains 88 FP additions, 63 FP multiplications, + * (or, 31 additions, 6 multiplications, 57 fused multiply/add), + * 96 stack variables, 23 constants, and 26 memory accesses + */ +#include "n1b.h" + +static void n1bv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP904176221, +0.904176221990848204433795481776887926501523162); + DVK(KP575140729, +0.575140729474003121368385547455453388461001608); + DVK(KP300462606, +0.300462606288665774426601772289207995520941381); + DVK(KP516520780, +0.516520780623489722840901288569017135705033622); + DVK(KP522026385, +0.522026385161275033714027226654165028300441940); + DVK(KP957805992, +0.957805992594665126462521754605754580515587217); + DVK(KP600477271, +0.600477271932665282925769253334763009352012849); + DVK(KP251768516, +0.251768516431883313623436926934233488546674281); + DVK(KP503537032, +0.503537032863766627246873853868466977093348562); + DVK(KP769338817, +0.769338817572980603471413688209101117038278899); + DVK(KP859542535, +0.859542535098774820163672132761689612766401925); + DVK(KP581704778, +0.581704778510515730456870384989698884939833902); + DVK(KP853480001, +0.853480001859823990758994934970528322872359049); + DVK(KP083333333, +0.083333333333333333333333333333333333333333333); + DVK(KP226109445, +0.226109445035782405468510155372505010481906348); + DVK(KP301479260, +0.301479260047709873958013540496673347309208464); + DVK(KP686558370, +0.686558370781754340655719594850823015421401653); + DVK(KP514918778, +0.514918778086315755491789696138117261566051239); + DVK(KP038632954, +0.038632954644348171955506895830342264440241080); + DVK(KP612264650, +0.612264650376756543746494474777125408779395514); + DVK(KP302775637, +0.302775637731994646559610633735247973125648287); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + const R *xi; + R *xo; + xi = ii; + xo = io; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) { + V T1, T7, T2, Tg, Tf, TN, Th, Tq, Ta, Tj, T5, Tr, Tk; + T1 = LD(&(xi[0]), ivs, &(xi[0])); + { + V Td, Te, T8, T9, T3, T4; + Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T3 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T4 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + Tf = VADD(Td, Te); + TN = VSUB(Td, Te); + Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Tq = VSUB(T8, T9); + Ta = VADD(T8, T9); + Tj = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + T5 = VADD(T3, T4); + Tr = VSUB(T4, T3); + Tk = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + } + { + V Tt, Ti, Ty, Tb, Ts, TQ, Tx, T6, Tu, Tl; + Tt = VSUB(Tg, Th); + Ti = VADD(Tg, Th); + Ty = VFMS(LDK(KP500000000), Ta, T7); + Tb = VADD(T7, Ta); + Ts = VSUB(Tq, Tr); + TQ = VADD(Tr, Tq); + Tx = VFNMS(LDK(KP500000000), T5, T2); + T6 = VADD(T2, T5); + Tu = VSUB(Tj, Tk); + Tl = VADD(Tj, Tk); + { + V TK, Tz, Tc, TX, Tv, TO, TL, Tm; + TK = VADD(Tx, Ty); + Tz = VSUB(Tx, Ty); + Tc = VADD(T6, Tb); + TX = VSUB(T6, Tb); + Tv = VSUB(Tt, Tu); + TO = VADD(Tt, Tu); + TL = VSUB(Ti, Tl); + Tm = VADD(Ti, Tl); + { + V TF, Tw, TP, TY, TT, TM, TA, Tn; + TF = VSUB(Ts, Tv); + Tw = VADD(Ts, Tv); + TP = VFNMS(LDK(KP500000000), TO, TN); + TY = VADD(TN, TO); + TT = VFNMS(LDK(KP866025403), TL, TK); + TM = VFMA(LDK(KP866025403), TL, TK); + TA = VFNMS(LDK(KP500000000), Tm, Tf); + Tn = VADD(Tf, Tm); + { + V T1f, T1n, TI, T18, T1k, T1c, TD, T17, T10, T1m, T16, T1e, TU, TR; + TU = VFNMS(LDK(KP866025403), TQ, TP); + TR = VFMA(LDK(KP866025403), TQ, TP); + { + V TZ, T15, TE, TB; + TZ = VFMA(LDK(KP302775637), TY, TX); + T15 = VFNMS(LDK(KP302775637), TX, TY); + TE = VSUB(Tz, TA); + TB = VADD(Tz, TA); + { + V TH, To, TV, T13; + TH = VSUB(Tc, Tn); + To = VADD(Tc, Tn); + TV = VFNMS(LDK(KP612264650), TU, TT); + T13 = VFMA(LDK(KP612264650), TT, TU); + { + V TS, T12, TG, T1b; + TS = VFNMS(LDK(KP038632954), TR, TM); + T12 = VFMA(LDK(KP038632954), TM, TR); + TG = VFNMS(LDK(KP514918778), TF, TE); + T1b = VFMA(LDK(KP686558370), TE, TF); + { + V TC, T1a, Tp, TW, T14; + TC = VFMA(LDK(KP301479260), TB, Tw); + T1a = VFNMS(LDK(KP226109445), Tw, TB); + Tp = VFNMS(LDK(KP083333333), To, T1); + ST(&(xo[0]), VADD(T1, To), ovs, &(xo[0])); + T1f = VFMA(LDK(KP853480001), TV, TS); + TW = VFNMS(LDK(KP853480001), TV, TS); + T1n = VFMA(LDK(KP853480001), T13, T12); + T14 = VFNMS(LDK(KP853480001), T13, T12); + TI = VFMA(LDK(KP581704778), TH, TG); + T18 = VFNMS(LDK(KP859542535), TG, TH); + T1k = VFMA(LDK(KP769338817), T1b, T1a); + T1c = VFNMS(LDK(KP769338817), T1b, T1a); + TD = VFMA(LDK(KP503537032), TC, Tp); + T17 = VFNMS(LDK(KP251768516), TC, Tp); + T10 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), TZ, TW)); + T1m = VFNMS(LDK(KP522026385), TW, TZ); + T16 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), T15, T14)); + T1e = VFNMS(LDK(KP522026385), T14, T15); + } + } + } + } + { + V T1o, T1q, T1g, T1i, T1d, T1h, T1l, T1p; + { + V T11, TJ, T19, T1j; + T11 = VFMA(LDK(KP516520780), TI, TD); + TJ = VFNMS(LDK(KP516520780), TI, TD); + T19 = VFMA(LDK(KP300462606), T18, T17); + T1j = VFNMS(LDK(KP300462606), T18, T17); + T1o = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1n, T1m)); + T1q = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1n, T1m)); + T1g = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1f, T1e)); + T1i = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1f, T1e)); + ST(&(xo[WS(os, 12)]), VFMAI(T16, T11), ovs, &(xo[0])); + ST(&(xo[WS(os, 1)]), VFNMSI(T16, T11), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 8)]), VFNMSI(T10, TJ), ovs, &(xo[0])); + ST(&(xo[WS(os, 5)]), VFMAI(T10, TJ), ovs, &(xo[WS(os, 1)])); + T1d = VFNMS(LDK(KP503537032), T1c, T19); + T1h = VFMA(LDK(KP503537032), T1c, T19); + T1l = VFNMS(LDK(KP503537032), T1k, T1j); + T1p = VFMA(LDK(KP503537032), T1k, T1j); + } + ST(&(xo[WS(os, 9)]), VFNMSI(T1g, T1d), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 4)]), VFMAI(T1g, T1d), ovs, &(xo[0])); + ST(&(xo[WS(os, 10)]), VFMAI(T1i, T1h), ovs, &(xo[0])); + ST(&(xo[WS(os, 3)]), VFNMSI(T1i, T1h), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 7)]), VFNMSI(T1o, T1l), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 6)]), VFMAI(T1o, T1l), ovs, &(xo[0])); + ST(&(xo[WS(os, 11)]), VFNMSI(T1q, T1p), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 2)]), VFMAI(T1q, T1p), ovs, &(xo[0])); + } + } + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 13, XSIMD_STRING("n1bv_13"), {31, 6, 57, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1bv_13) (planner *p) { + X(kdft_register) (p, n1bv_13, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 13 -name n1bv_13 -include n1b.h */ + +/* + * This function contains 88 FP additions, 34 FP multiplications, + * (or, 69 additions, 15 multiplications, 19 fused multiply/add), + * 60 stack variables, 20 constants, and 26 memory accesses + */ +#include "n1b.h" + +static void n1bv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DVK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DVK(KP083333333, +0.083333333333333333333333333333333333333333333); + DVK(KP075902986, +0.075902986037193865983102897245103540356428373); + DVK(KP251768516, +0.251768516431883313623436926934233488546674281); + DVK(KP132983124, +0.132983124607418643793760531921092974399165133); + DVK(KP258260390, +0.258260390311744861420450644284508567852516811); + DVK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DVK(KP300238635, +0.300238635966332641462884626667381504676006424); + DVK(KP011599105, +0.011599105605768290721655456654083252189827041); + DVK(KP256247671, +0.256247671582936600958684654061725059144125175); + DVK(KP156891391, +0.156891391051584611046832726756003269660212636); + DVK(KP174138601, +0.174138601152135905005660794929264742616964676); + DVK(KP575140729, +0.575140729474003121368385547455453388461001608); + DVK(KP503537032, +0.503537032863766627246873853868466977093348562); + DVK(KP113854479, +0.113854479055790798974654345867655310534642560); + DVK(KP265966249, +0.265966249214837287587521063842185948798330267); + DVK(KP387390585, +0.387390585467617292130675966426762851778775217); + DVK(KP300462606, +0.300462606288665774426601772289207995520941381); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + const R *xi; + R *xo; + xi = ii; + xo = io; + for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) { + V TW, Tb, Tm, Ts, TB, TR, TX, TK, TU, Tz, TC, TN, TT; + TW = LD(&(xi[0]), ivs, &(xi[0])); + { + V Te, TH, Ta, Tu, Tp, T5, Tt, To, Th, Tw, Tk, Tx, Tl, TI, Tc; + V Td, Tq, Tr; + Tc = LD(&(xi[WS(is, 8)]), ivs, &(xi[0])); + Td = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)])); + Te = VSUB(Tc, Td); + TH = VADD(Tc, Td); + { + V T6, T7, T8, T9; + T6 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0])); + T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0])); + T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0])); + T9 = VADD(T7, T8); + Ta = VADD(T6, T9); + Tu = VFNMS(LDK(KP500000000), T9, T6); + Tp = VSUB(T7, T8); + } + { + V T1, T2, T3, T4; + T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)])); + T2 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)])); + T3 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)])); + T4 = VADD(T2, T3); + T5 = VADD(T1, T4); + Tt = VFNMS(LDK(KP500000000), T4, T1); + To = VSUB(T2, T3); + } + { + V Tf, Tg, Ti, Tj; + Tf = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)])); + Tg = LD(&(xi[WS(is, 6)]), ivs, &(xi[0])); + Th = VSUB(Tf, Tg); + Tw = VADD(Tf, Tg); + Ti = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)])); + Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0])); + Tk = VSUB(Ti, Tj); + Tx = VADD(Ti, Tj); + } + Tl = VADD(Th, Tk); + TI = VADD(Tw, Tx); + Tb = VSUB(T5, Ta); + Tm = VADD(Te, Tl); + Tq = VMUL(LDK(KP866025403), VSUB(To, Tp)); + Tr = VFNMS(LDK(KP500000000), Tl, Te); + Ts = VADD(Tq, Tr); + TB = VSUB(Tq, Tr); + { + V TP, TQ, TG, TJ; + TP = VADD(T5, Ta); + TQ = VADD(TH, TI); + TR = VMUL(LDK(KP300462606), VSUB(TP, TQ)); + TX = VADD(TP, TQ); + TG = VADD(Tt, Tu); + TJ = VFNMS(LDK(KP500000000), TI, TH); + TK = VSUB(TG, TJ); + TU = VADD(TG, TJ); + } + { + V Tv, Ty, TL, TM; + Tv = VSUB(Tt, Tu); + Ty = VMUL(LDK(KP866025403), VSUB(Tw, Tx)); + Tz = VSUB(Tv, Ty); + TC = VADD(Tv, Ty); + TL = VADD(To, Tp); + TM = VSUB(Th, Tk); + TN = VSUB(TL, TM); + TT = VADD(TL, TM); + } + } + ST(&(xo[0]), VADD(TW, TX), ovs, &(xo[0])); + { + V T1c, T1n, T11, T14, T17, T1k, Tn, TE, T18, T1j, TS, T1m, TZ, T1f, TA; + V TD; + { + V T1a, T1b, T12, T13; + T1a = VFMA(LDK(KP387390585), TN, VMUL(LDK(KP265966249), TK)); + T1b = VFNMS(LDK(KP503537032), TU, VMUL(LDK(KP113854479), TT)); + T1c = VSUB(T1a, T1b); + T1n = VADD(T1a, T1b); + T11 = VFMA(LDK(KP575140729), Tb, VMUL(LDK(KP174138601), Tm)); + T12 = VFNMS(LDK(KP256247671), Tz, VMUL(LDK(KP156891391), Ts)); + T13 = VFMA(LDK(KP011599105), TB, VMUL(LDK(KP300238635), TC)); + T14 = VADD(T12, T13); + T17 = VSUB(T11, T14); + T1k = VMUL(LDK(KP1_732050807), VSUB(T12, T13)); + } + Tn = VFNMS(LDK(KP575140729), Tm, VMUL(LDK(KP174138601), Tb)); + TA = VFMA(LDK(KP256247671), Ts, VMUL(LDK(KP156891391), Tz)); + TD = VFNMS(LDK(KP011599105), TC, VMUL(LDK(KP300238635), TB)); + TE = VADD(TA, TD); + T18 = VMUL(LDK(KP1_732050807), VSUB(TD, TA)); + T1j = VSUB(Tn, TE); + { + V TO, T1e, TV, TY, T1d; + TO = VFNMS(LDK(KP132983124), TN, VMUL(LDK(KP258260390), TK)); + T1e = VSUB(TR, TO); + TV = VFMA(LDK(KP251768516), TT, VMUL(LDK(KP075902986), TU)); + TY = VFNMS(LDK(KP083333333), TX, TW); + T1d = VSUB(TY, TV); + TS = VFMA(LDK(KP2_000000000), TO, TR); + T1m = VADD(T1e, T1d); + TZ = VFMA(LDK(KP2_000000000), TV, TY); + T1f = VSUB(T1d, T1e); + } + { + V TF, T10, T1l, T1o; + TF = VBYI(VFMA(LDK(KP2_000000000), TE, Tn)); + T10 = VADD(TS, TZ); + ST(&(xo[WS(os, 1)]), VADD(TF, T10), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 12)]), VSUB(T10, TF), ovs, &(xo[0])); + { + V T15, T16, T1p, T1q; + T15 = VBYI(VFMA(LDK(KP2_000000000), T14, T11)); + T16 = VSUB(TZ, TS); + ST(&(xo[WS(os, 5)]), VADD(T15, T16), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 8)]), VSUB(T16, T15), ovs, &(xo[0])); + T1p = VADD(T1n, T1m); + T1q = VBYI(VADD(T1j, T1k)); + ST(&(xo[WS(os, 4)]), VSUB(T1p, T1q), ovs, &(xo[0])); + ST(&(xo[WS(os, 9)]), VADD(T1q, T1p), ovs, &(xo[WS(os, 1)])); + } + T1l = VBYI(VSUB(T1j, T1k)); + T1o = VSUB(T1m, T1n); + ST(&(xo[WS(os, 3)]), VADD(T1l, T1o), ovs, &(xo[WS(os, 1)])); + ST(&(xo[WS(os, 10)]), VSUB(T1o, T1l), ovs, &(xo[0])); + { + V T1h, T1i, T19, T1g; + T1h = VBYI(VADD(T18, T17)); + T1i = VSUB(T1f, T1c); + ST(&(xo[WS(os, 6)]), VADD(T1h, T1i), ovs, &(xo[0])); + ST(&(xo[WS(os, 7)]), VSUB(T1i, T1h), ovs, &(xo[WS(os, 1)])); + T19 = VBYI(VSUB(T17, T18)); + T1g = VADD(T1c, T1f); + ST(&(xo[WS(os, 2)]), VADD(T19, T1g), ovs, &(xo[0])); + ST(&(xo[WS(os, 11)]), VSUB(T1g, T19), ovs, &(xo[WS(os, 1)])); + } + } + } + } + } + VLEAVE(); +} + +static const kdft_desc desc = { 13, XSIMD_STRING("n1bv_13"), {69, 15, 19, 0}, &GENUS, 0, 0, 0, 0 }; + +void XSIMD(codelet_n1bv_13) (planner *p) { + X(kdft_register) (p, n1bv_13, &desc); +} + +#endif /* HAVE_FMA */