Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_64.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_64.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,3975 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:52 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */ + +/* + * This function contains 1038 FP additions, 644 FP multiplications, + * (or, 520 additions, 126 multiplications, 518 fused multiply/add), + * 228 stack variables, 15 constants, and 256 memory accesses + */ +#include "t.h" + +static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP820678790, +0.820678790828660330972281985331011598767386482); + DK(KP098491403, +0.098491403357164253077197521291327432293052451); + DK(KP534511135, +0.534511135950791641089685961295362908582039528); + DK(KP303346683, +0.303346683607342391675883946941299872384187453); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { + E TeI, Tkk, Tkj, TeL; + { + E TiV, Tjm, T7e, TcA, TjR, Tkl, Tm, TeM, TeZ, Ths, T7Q, TcJ, T1G, TeW, TcI; + E T7X, Tf5, Thv, T87, TcN, T29, Tf8, TcQ, T8u, TfU, ThS, Taq, Tdm, T5K, Tg9; + E Tdx, Tbj, TcB, T7l, TiP, TeP, Tjl, TN, TcC, T7s, T7I, TcF, TeU, Thr, T7B; + E TcG, T1f, TeR, Tfg, ThB, T8G, TcU, T32, Tfj, TcX, T93, Tft, ThH, T9h, Td3; + E T3X, TfI, Tde, Taa, Thw, Tfb, Tf6, T2A, T8x, TcO, T8m, TcR, Tfm, ThC, T3t; + E Tfh, T96, TcV, T8V, TcY, ThI, TfL, Tfu, T4o, Tad, Td4, T9w, Tdf, Tgc, ThT; + E T6b, TfV, Tbm, Tdn, TaF, Tdy, ThN, T4Q, TfN, TfA, Taf, Ta1, Td8, Tdh, ThO; + E T5h, TfO, TfF, Tag, T9M, Tdb, Tdi, ThY, T6D, Tge, Tg1, Tbo, Tba, Tdr, TdA; + E TaN, Tdt, Tg5, ThZ, Tg2, T74, Tds, TaU; + { + E T7a, Te, T78, T8, TjP, TiU, T7c, Tk; + { + E T1, TiT, TiS, T7, Tg, Tj, Tf, Ti, T7b, Th; + T1 = ri[0]; + TiT = ii[0]; + { + E T3, T6, T2, T5; + T3 = ri[WS(rs, 32)]; + T6 = ii[WS(rs, 32)]; + T2 = W[62]; + T5 = W[63]; + { + E Ta, Td, Tc, T79, Tb, TiR, T4, T9; + Ta = ri[WS(rs, 16)]; + Td = ii[WS(rs, 16)]; + TiR = T2 * T6; + T4 = T2 * T3; + T9 = W[30]; + Tc = W[31]; + TiS = FNMS(T5, T3, TiR); + T7 = FMA(T5, T6, T4); + T79 = T9 * Td; + Tb = T9 * Ta; + Tg = ri[WS(rs, 48)]; + Tj = ii[WS(rs, 48)]; + T7a = FNMS(Tc, Ta, T79); + Te = FMA(Tc, Td, Tb); + Tf = W[94]; + Ti = W[95]; + } + } + T78 = T1 - T7; + T8 = T1 + T7; + TjP = TiT - TiS; + TiU = TiS + TiT; + T7b = Tf * Tj; + Th = Tf * Tg; + T7c = FNMS(Ti, Tg, T7b); + Tk = FMA(Ti, Tj, Th); + } + { + E T7L, T1l, T7V, T1E, T1u, T1x, T1w, T7N, T1r, T7S, T1v; + { + E T1A, T1D, T1C, T7U, T1B; + { + E T1h, T1k, T1g, T1j, T7K, T1i, T1z; + T1h = ri[WS(rs, 60)]; + T1k = ii[WS(rs, 60)]; + { + E T7d, TiQ, Tl, TjQ; + T7d = T7a - T7c; + TiQ = T7a + T7c; + Tl = Te + Tk; + TjQ = Te - Tk; + TiV = TiQ + TiU; + Tjm = TiU - TiQ; + T7e = T78 - T7d; + TcA = T78 + T7d; + TjR = TjP - TjQ; + Tkl = TjQ + TjP; + Tm = T8 + Tl; + TeM = T8 - Tl; + T1g = W[118]; + } + T1j = W[119]; + T1A = ri[WS(rs, 44)]; + T1D = ii[WS(rs, 44)]; + T7K = T1g * T1k; + T1i = T1g * T1h; + T1z = W[86]; + T1C = W[87]; + T7L = FNMS(T1j, T1h, T7K); + T1l = FMA(T1j, T1k, T1i); + T7U = T1z * T1D; + T1B = T1z * T1A; + } + { + E T1n, T1q, T1m, T1p, T7M, T1o, T1t; + T1n = ri[WS(rs, 28)]; + T1q = ii[WS(rs, 28)]; + T7V = FNMS(T1C, T1A, T7U); + T1E = FMA(T1C, T1D, T1B); + T1m = W[54]; + T1p = W[55]; + T1u = ri[WS(rs, 12)]; + T1x = ii[WS(rs, 12)]; + T7M = T1m * T1q; + T1o = T1m * T1n; + T1t = W[22]; + T1w = W[23]; + T7N = FNMS(T1p, T1n, T7M); + T1r = FMA(T1p, T1q, T1o); + T7S = T1t * T1x; + T1v = T1t * T1u; + } + } + { + E T7O, TeX, T1s, T7R, T7T, T1y; + T7O = T7L - T7N; + TeX = T7L + T7N; + T1s = T1l + T1r; + T7R = T1l - T1r; + T7T = FNMS(T1w, T1u, T7S); + T1y = FMA(T1w, T1x, T1v); + { + E T7W, TeY, T7P, T1F; + T7W = T7T - T7V; + TeY = T7T + T7V; + T7P = T1y - T1E; + T1F = T1y + T1E; + TeZ = TeX - TeY; + Ths = TeX + TeY; + T7Q = T7O + T7P; + TcJ = T7O - T7P; + T1G = T1s + T1F; + TeW = T1s - T1F; + TcI = T7R + T7W; + T7X = T7R - T7W; + } + } + } + } + { + E T82, T1O, T8s, T27, T1X, T20, T1Z, T84, T1U, T8p, T1Y; + { + E T23, T26, T25, T8r, T24; + { + E T1K, T1N, T1J, T1M, T81, T1L, T22; + T1K = ri[WS(rs, 2)]; + T1N = ii[WS(rs, 2)]; + T1J = W[2]; + T1M = W[3]; + T23 = ri[WS(rs, 50)]; + T26 = ii[WS(rs, 50)]; + T81 = T1J * T1N; + T1L = T1J * T1K; + T22 = W[98]; + T25 = W[99]; + T82 = FNMS(T1M, T1K, T81); + T1O = FMA(T1M, T1N, T1L); + T8r = T22 * T26; + T24 = T22 * T23; + } + { + E T1Q, T1T, T1P, T1S, T83, T1R, T1W; + T1Q = ri[WS(rs, 34)]; + T1T = ii[WS(rs, 34)]; + T8s = FNMS(T25, T23, T8r); + T27 = FMA(T25, T26, T24); + T1P = W[66]; + T1S = W[67]; + T1X = ri[WS(rs, 18)]; + T20 = ii[WS(rs, 18)]; + T83 = T1P * T1T; + T1R = T1P * T1Q; + T1W = W[34]; + T1Z = W[35]; + T84 = FNMS(T1S, T1Q, T83); + T1U = FMA(T1S, T1T, T1R); + T8p = T1W * T20; + T1Y = T1W * T1X; + } + } + { + E T85, Tf3, T1V, T8o, T8q, T21; + T85 = T82 - T84; + Tf3 = T82 + T84; + T1V = T1O + T1U; + T8o = T1O - T1U; + T8q = FNMS(T1Z, T1X, T8p); + T21 = FMA(T1Z, T20, T1Y); + { + E T8t, Tf4, T86, T28; + T8t = T8q - T8s; + Tf4 = T8q + T8s; + T86 = T21 - T27; + T28 = T21 + T27; + Tf5 = Tf3 - Tf4; + Thv = Tf3 + Tf4; + T87 = T85 + T86; + TcN = T85 - T86; + T29 = T1V + T28; + Tf8 = T1V - T28; + TcQ = T8o + T8t; + T8u = T8o - T8t; + } + } + } + { + E Tal, T5p, Tbh, T5I, T5y, T5B, T5A, Tan, T5v, Tbe, T5z; + { + E T5E, T5H, T5G, Tbg, T5F; + { + E T5l, T5o, T5k, T5n, Tak, T5m, T5D; + T5l = ri[WS(rs, 63)]; + T5o = ii[WS(rs, 63)]; + T5k = W[124]; + T5n = W[125]; + T5E = ri[WS(rs, 47)]; + T5H = ii[WS(rs, 47)]; + Tak = T5k * T5o; + T5m = T5k * T5l; + T5D = W[92]; + T5G = W[93]; + Tal = FNMS(T5n, T5l, Tak); + T5p = FMA(T5n, T5o, T5m); + Tbg = T5D * T5H; + T5F = T5D * T5E; + } + { + E T5r, T5u, T5q, T5t, Tam, T5s, T5x; + T5r = ri[WS(rs, 31)]; + T5u = ii[WS(rs, 31)]; + Tbh = FNMS(T5G, T5E, Tbg); + T5I = FMA(T5G, T5H, T5F); + T5q = W[60]; + T5t = W[61]; + T5y = ri[WS(rs, 15)]; + T5B = ii[WS(rs, 15)]; + Tam = T5q * T5u; + T5s = T5q * T5r; + T5x = W[28]; + T5A = W[29]; + Tan = FNMS(T5t, T5r, Tam); + T5v = FMA(T5t, T5u, T5s); + Tbe = T5x * T5B; + T5z = T5x * T5y; + } + } + { + E Tao, TfS, T5w, Tbd, Tbf, T5C; + Tao = Tal - Tan; + TfS = Tal + Tan; + T5w = T5p + T5v; + Tbd = T5p - T5v; + Tbf = FNMS(T5A, T5y, Tbe); + T5C = FMA(T5A, T5B, T5z); + { + E Tbi, TfT, Tap, T5J; + Tbi = Tbf - Tbh; + TfT = Tbf + Tbh; + Tap = T5C - T5I; + T5J = T5C + T5I; + TfU = TfS - TfT; + ThS = TfS + TfT; + Taq = Tao + Tap; + Tdm = Tao - Tap; + T5K = T5w + T5J; + Tg9 = T5w - T5J; + Tdx = Tbd + Tbi; + Tbj = Tbd - Tbi; + } + } + } + { + E T7G, T1d, T7z, TeS, T11, T7C, T7E, T17, T7r, T7m; + { + E T7g, Ts, T7q, TL, TB, TE, TD, T7i, Ty, T7n, TC; + { + E TH, TK, TJ, T7p, TI; + { + E To, Tr, Tn, Tq, T7f, Tp, TG; + To = ri[WS(rs, 8)]; + Tr = ii[WS(rs, 8)]; + Tn = W[14]; + Tq = W[15]; + TH = ri[WS(rs, 24)]; + TK = ii[WS(rs, 24)]; + T7f = Tn * Tr; + Tp = Tn * To; + TG = W[46]; + TJ = W[47]; + T7g = FNMS(Tq, To, T7f); + Ts = FMA(Tq, Tr, Tp); + T7p = TG * TK; + TI = TG * TH; + } + { + E Tu, Tx, Tt, Tw, T7h, Tv, TA; + Tu = ri[WS(rs, 40)]; + Tx = ii[WS(rs, 40)]; + T7q = FNMS(TJ, TH, T7p); + TL = FMA(TJ, TK, TI); + Tt = W[78]; + Tw = W[79]; + TB = ri[WS(rs, 56)]; + TE = ii[WS(rs, 56)]; + T7h = Tt * Tx; + Tv = Tt * Tu; + TA = W[110]; + TD = W[111]; + T7i = FNMS(Tw, Tu, T7h); + Ty = FMA(Tw, Tx, Tv); + T7n = TA * TE; + TC = TA * TB; + } + } + { + E T7j, TeN, Tz, T7k, T7o, TF, TeO, TM; + T7j = T7g - T7i; + TeN = T7g + T7i; + Tz = Ts + Ty; + T7k = Ts - Ty; + T7o = FNMS(TD, TB, T7n); + TF = FMA(TD, TE, TC); + T7r = T7o - T7q; + TeO = T7o + T7q; + TM = TF + TL; + T7m = TF - TL; + TcB = T7k + T7j; + T7l = T7j - T7k; + TiP = TeN + TeO; + TeP = TeN - TeO; + Tjl = TM - Tz; + TN = Tz + TM; + } + } + { + E T7w, TU, T13, T16, T7y, T10, T12, T15, T7D, T14; + { + E T19, T1c, T18, T1b; + { + E TQ, TT, TS, T7v, TR, TP; + TQ = ri[WS(rs, 4)]; + TT = ii[WS(rs, 4)]; + TP = W[6]; + TcC = T7m - T7r; + T7s = T7m + T7r; + TS = W[7]; + T7v = TP * TT; + TR = TP * TQ; + T19 = ri[WS(rs, 52)]; + T1c = ii[WS(rs, 52)]; + T7w = FNMS(TS, TQ, T7v); + TU = FMA(TS, TT, TR); + T18 = W[102]; + T1b = W[103]; + } + { + E TW, TZ, TY, T7x, TX, T7F, T1a, TV; + TW = ri[WS(rs, 36)]; + TZ = ii[WS(rs, 36)]; + T7F = T18 * T1c; + T1a = T18 * T19; + TV = W[70]; + TY = W[71]; + T7G = FNMS(T1b, T19, T7F); + T1d = FMA(T1b, T1c, T1a); + T7x = TV * TZ; + TX = TV * TW; + T13 = ri[WS(rs, 20)]; + T16 = ii[WS(rs, 20)]; + T7y = FNMS(TY, TW, T7x); + T10 = FMA(TY, TZ, TX); + T12 = W[38]; + T15 = W[39]; + } + } + T7z = T7w - T7y; + TeS = T7w + T7y; + T11 = TU + T10; + T7C = TU - T10; + T7D = T12 * T16; + T14 = T12 * T13; + T7E = FNMS(T15, T13, T7D); + T17 = FMA(T15, T16, T14); + } + { + E T8B, T2H, T91, T30, T2Q, T2T, T2S, T8D, T2N, T8Y, T2R; + { + E T2W, T2Z, T2Y, T90, T2X; + { + E T2D, T2G, T2C, T2F, T8A, T2E, T2V; + T2D = ri[WS(rs, 62)]; + T2G = ii[WS(rs, 62)]; + { + E TeT, T7H, T1e, T7A; + TeT = T7E + T7G; + T7H = T7E - T7G; + T1e = T17 + T1d; + T7A = T17 - T1d; + T7I = T7C - T7H; + TcF = T7C + T7H; + TeU = TeS - TeT; + Thr = TeS + TeT; + T7B = T7z + T7A; + TcG = T7z - T7A; + T1f = T11 + T1e; + TeR = T11 - T1e; + T2C = W[122]; + } + T2F = W[123]; + T2W = ri[WS(rs, 46)]; + T2Z = ii[WS(rs, 46)]; + T8A = T2C * T2G; + T2E = T2C * T2D; + T2V = W[90]; + T2Y = W[91]; + T8B = FNMS(T2F, T2D, T8A); + T2H = FMA(T2F, T2G, T2E); + T90 = T2V * T2Z; + T2X = T2V * T2W; + } + { + E T2J, T2M, T2I, T2L, T8C, T2K, T2P; + T2J = ri[WS(rs, 30)]; + T2M = ii[WS(rs, 30)]; + T91 = FNMS(T2Y, T2W, T90); + T30 = FMA(T2Y, T2Z, T2X); + T2I = W[58]; + T2L = W[59]; + T2Q = ri[WS(rs, 14)]; + T2T = ii[WS(rs, 14)]; + T8C = T2I * T2M; + T2K = T2I * T2J; + T2P = W[26]; + T2S = W[27]; + T8D = FNMS(T2L, T2J, T8C); + T2N = FMA(T2L, T2M, T2K); + T8Y = T2P * T2T; + T2R = T2P * T2Q; + } + } + { + E T8E, Tfe, T2O, T8X, T8Z, T2U; + T8E = T8B - T8D; + Tfe = T8B + T8D; + T2O = T2H + T2N; + T8X = T2H - T2N; + T8Z = FNMS(T2S, T2Q, T8Y); + T2U = FMA(T2S, T2T, T2R); + { + E T92, Tff, T8F, T31; + T92 = T8Z - T91; + Tff = T8Z + T91; + T8F = T2U - T30; + T31 = T2U + T30; + Tfg = Tfe - Tff; + ThB = Tfe + Tff; + T8G = T8E + T8F; + TcU = T8E - T8F; + T32 = T2O + T31; + Tfj = T2O - T31; + TcX = T8X + T92; + T93 = T8X - T92; + } + } + } + { + E T9c, T3C, Ta8, T3V, T3L, T3O, T3N, T9e, T3I, Ta5, T3M; + { + E T3R, T3U, T3T, Ta7, T3S; + { + E T3y, T3B, T3x, T3A, T9b, T3z, T3Q; + T3y = ri[WS(rs, 1)]; + T3B = ii[WS(rs, 1)]; + T3x = W[0]; + T3A = W[1]; + T3R = ri[WS(rs, 49)]; + T3U = ii[WS(rs, 49)]; + T9b = T3x * T3B; + T3z = T3x * T3y; + T3Q = W[96]; + T3T = W[97]; + T9c = FNMS(T3A, T3y, T9b); + T3C = FMA(T3A, T3B, T3z); + Ta7 = T3Q * T3U; + T3S = T3Q * T3R; + } + { + E T3E, T3H, T3D, T3G, T9d, T3F, T3K; + T3E = ri[WS(rs, 33)]; + T3H = ii[WS(rs, 33)]; + Ta8 = FNMS(T3T, T3R, Ta7); + T3V = FMA(T3T, T3U, T3S); + T3D = W[64]; + T3G = W[65]; + T3L = ri[WS(rs, 17)]; + T3O = ii[WS(rs, 17)]; + T9d = T3D * T3H; + T3F = T3D * T3E; + T3K = W[32]; + T3N = W[33]; + T9e = FNMS(T3G, T3E, T9d); + T3I = FMA(T3G, T3H, T3F); + Ta5 = T3K * T3O; + T3M = T3K * T3L; + } + } + { + E T9f, Tfr, T3J, Ta4, Ta6, T3P; + T9f = T9c - T9e; + Tfr = T9c + T9e; + T3J = T3C + T3I; + Ta4 = T3C - T3I; + Ta6 = FNMS(T3N, T3L, Ta5); + T3P = FMA(T3N, T3O, T3M); + { + E Ta9, Tfs, T9g, T3W; + Ta9 = Ta6 - Ta8; + Tfs = Ta6 + Ta8; + T9g = T3P - T3V; + T3W = T3P + T3V; + Tft = Tfr - Tfs; + ThH = Tfr + Tfs; + T9h = T9f + T9g; + Td3 = T9f - T9g; + T3X = T3J + T3W; + TfI = T3J - T3W; + Tde = Ta4 + Ta9; + Taa = Ta4 - Ta9; + } + } + } + } + { + E TaC, T69, Taw, Tga, T5X, Tar, TaA, T63; + { + E T8S, T3r, T8M, Tfk, T3f, T8H, T8Q, T3l; + { + E T8k, T8f, T8w, T8e; + { + E T8a, T2f, T8j, T2y, T2o, T2r, T2q, T8c, T2l, T8g, T2p; + { + E T2u, T2x, T2w, T8i, T2v; + { + E T2b, T2e, T2a, T2d, T89, T2c, T2t; + T2b = ri[WS(rs, 10)]; + T2e = ii[WS(rs, 10)]; + T2a = W[18]; + T2d = W[19]; + T2u = ri[WS(rs, 26)]; + T2x = ii[WS(rs, 26)]; + T89 = T2a * T2e; + T2c = T2a * T2b; + T2t = W[50]; + T2w = W[51]; + T8a = FNMS(T2d, T2b, T89); + T2f = FMA(T2d, T2e, T2c); + T8i = T2t * T2x; + T2v = T2t * T2u; + } + { + E T2h, T2k, T2g, T2j, T8b, T2i, T2n; + T2h = ri[WS(rs, 42)]; + T2k = ii[WS(rs, 42)]; + T8j = FNMS(T2w, T2u, T8i); + T2y = FMA(T2w, T2x, T2v); + T2g = W[82]; + T2j = W[83]; + T2o = ri[WS(rs, 58)]; + T2r = ii[WS(rs, 58)]; + T8b = T2g * T2k; + T2i = T2g * T2h; + T2n = W[114]; + T2q = W[115]; + T8c = FNMS(T2j, T2h, T8b); + T2l = FMA(T2j, T2k, T2i); + T8g = T2n * T2r; + T2p = T2n * T2o; + } + } + { + E T8d, Tf9, T2m, T88, T8h, T2s, Tfa, T2z; + T8d = T8a - T8c; + Tf9 = T8a + T8c; + T2m = T2f + T2l; + T88 = T2f - T2l; + T8h = FNMS(T2q, T2o, T8g); + T2s = FMA(T2q, T2r, T2p); + T8k = T8h - T8j; + Tfa = T8h + T8j; + T2z = T2s + T2y; + T8f = T2s - T2y; + T8w = T8d - T88; + T8e = T88 + T8d; + Thw = Tf9 + Tfa; + Tfb = Tf9 - Tfa; + Tf6 = T2z - T2m; + T2A = T2m + T2z; + } + } + { + E T38, T8J, T3h, T3k, T8L, T3e, T3g, T3j, T8P, T3i; + { + E T3n, T3q, T3m, T3p; + { + E T34, T37, T33, T8v, T8l, T36, T8I, T35; + T34 = ri[WS(rs, 6)]; + T37 = ii[WS(rs, 6)]; + T33 = W[10]; + T8v = T8f + T8k; + T8l = T8f - T8k; + T36 = W[11]; + T8I = T33 * T37; + T35 = T33 * T34; + T8x = T8v - T8w; + TcO = T8w + T8v; + T8m = T8e - T8l; + TcR = T8e + T8l; + T38 = FMA(T36, T37, T35); + T8J = FNMS(T36, T34, T8I); + } + T3n = ri[WS(rs, 22)]; + T3q = ii[WS(rs, 22)]; + T3m = W[42]; + T3p = W[43]; + { + E T3a, T3d, T3c, T8K, T3b, T8R, T3o, T39; + T3a = ri[WS(rs, 38)]; + T3d = ii[WS(rs, 38)]; + T8R = T3m * T3q; + T3o = T3m * T3n; + T39 = W[74]; + T3c = W[75]; + T8S = FNMS(T3p, T3n, T8R); + T3r = FMA(T3p, T3q, T3o); + T8K = T39 * T3d; + T3b = T39 * T3a; + T3h = ri[WS(rs, 54)]; + T3k = ii[WS(rs, 54)]; + T8L = FNMS(T3c, T3a, T8K); + T3e = FMA(T3c, T3d, T3b); + T3g = W[106]; + T3j = W[107]; + } + } + T8M = T8J - T8L; + Tfk = T8J + T8L; + T3f = T38 + T3e; + T8H = T38 - T3e; + T8P = T3g * T3k; + T3i = T3g * T3h; + T8Q = FNMS(T3j, T3h, T8P); + T3l = FMA(T3j, T3k, T3i); + } + } + { + E T9u, T9p, Tac, T9o; + { + E T9k, T43, T9t, T4m, T4c, T4f, T4e, T9m, T49, T9q, T4d; + { + E T4i, T4l, T4k, T9s, T4j; + { + E T3Z, T42, T3Y, T41, T9j, T40, T4h; + { + E T95, T8N, T8T, Tfl, T8O, T3s, T8U, T94; + T3Z = ri[WS(rs, 9)]; + T95 = T8M - T8H; + T8N = T8H + T8M; + T8T = T8Q - T8S; + Tfl = T8Q + T8S; + T8O = T3l - T3r; + T3s = T3l + T3r; + T42 = ii[WS(rs, 9)]; + Tfm = Tfk - Tfl; + ThC = Tfk + Tfl; + T8U = T8O - T8T; + T94 = T8O + T8T; + T3t = T3f + T3s; + Tfh = T3s - T3f; + T96 = T94 - T95; + TcV = T95 + T94; + T8V = T8N - T8U; + TcY = T8N + T8U; + T3Y = W[16]; + } + T41 = W[17]; + T4i = ri[WS(rs, 25)]; + T4l = ii[WS(rs, 25)]; + T9j = T3Y * T42; + T40 = T3Y * T3Z; + T4h = W[48]; + T4k = W[49]; + T9k = FNMS(T41, T3Z, T9j); + T43 = FMA(T41, T42, T40); + T9s = T4h * T4l; + T4j = T4h * T4i; + } + { + E T45, T48, T44, T47, T9l, T46, T4b; + T45 = ri[WS(rs, 41)]; + T48 = ii[WS(rs, 41)]; + T9t = FNMS(T4k, T4i, T9s); + T4m = FMA(T4k, T4l, T4j); + T44 = W[80]; + T47 = W[81]; + T4c = ri[WS(rs, 57)]; + T4f = ii[WS(rs, 57)]; + T9l = T44 * T48; + T46 = T44 * T45; + T4b = W[112]; + T4e = W[113]; + T9m = FNMS(T47, T45, T9l); + T49 = FMA(T47, T48, T46); + T9q = T4b * T4f; + T4d = T4b * T4c; + } + } + { + E T9n, TfJ, T4a, T9i, T9r, T4g, TfK, T4n; + T9n = T9k - T9m; + TfJ = T9k + T9m; + T4a = T43 + T49; + T9i = T43 - T49; + T9r = FNMS(T4e, T4c, T9q); + T4g = FMA(T4e, T4f, T4d); + T9u = T9r - T9t; + TfK = T9r + T9t; + T4n = T4g + T4m; + T9p = T4g - T4m; + Tac = T9n - T9i; + T9o = T9i + T9n; + ThI = TfJ + TfK; + TfL = TfJ - TfK; + Tfu = T4n - T4a; + T4o = T4a + T4n; + } + } + { + E T5Q, Tat, T5Z, T62, Tav, T5W, T5Y, T61, Taz, T60; + { + E T65, T68, T64, T67; + { + E T5M, T5P, T5L, Tab, T9v, T5O, Tas, T5N; + T5M = ri[WS(rs, 7)]; + T5P = ii[WS(rs, 7)]; + T5L = W[12]; + Tab = T9p + T9u; + T9v = T9p - T9u; + T5O = W[13]; + Tas = T5L * T5P; + T5N = T5L * T5M; + Tad = Tab - Tac; + Td4 = Tac + Tab; + T9w = T9o - T9v; + Tdf = T9o + T9v; + T5Q = FMA(T5O, T5P, T5N); + Tat = FNMS(T5O, T5M, Tas); + } + T65 = ri[WS(rs, 23)]; + T68 = ii[WS(rs, 23)]; + T64 = W[44]; + T67 = W[45]; + { + E T5S, T5V, T5U, Tau, T5T, TaB, T66, T5R; + T5S = ri[WS(rs, 39)]; + T5V = ii[WS(rs, 39)]; + TaB = T64 * T68; + T66 = T64 * T65; + T5R = W[76]; + T5U = W[77]; + TaC = FNMS(T67, T65, TaB); + T69 = FMA(T67, T68, T66); + Tau = T5R * T5V; + T5T = T5R * T5S; + T5Z = ri[WS(rs, 55)]; + T62 = ii[WS(rs, 55)]; + Tav = FNMS(T5U, T5S, Tau); + T5W = FMA(T5U, T5V, T5T); + T5Y = W[108]; + T61 = W[109]; + } + } + Taw = Tat - Tav; + Tga = Tat + Tav; + T5X = T5Q + T5W; + Tar = T5Q - T5W; + Taz = T5Y * T62; + T60 = T5Y * T5Z; + TaA = FNMS(T61, T5Z, Taz); + T63 = FMA(T61, T62, T60); + } + } + } + { + E T9E, Tda, TfE, TfB, Td9, T9L; + { + E T9T, Td7, Tfy, Tfz, Td6, Ta0; + { + E T9V, T4v, T9R, T4O, T4E, T4H, T4G, T9X, T4B, T9O, T4F; + { + E T4K, T4N, T4M, T9Q, T4L; + { + E T4r, T4u, T4q, T4t, T9U, T4s, T4J; + { + E Tbl, Tax, TaD, Tgb, Tay, T6a, TaE, Tbk; + T4r = ri[WS(rs, 5)]; + Tbl = Taw - Tar; + Tax = Tar + Taw; + TaD = TaA - TaC; + Tgb = TaA + TaC; + Tay = T63 - T69; + T6a = T63 + T69; + T4u = ii[WS(rs, 5)]; + Tgc = Tga - Tgb; + ThT = Tga + Tgb; + TaE = Tay - TaD; + Tbk = Tay + TaD; + T6b = T5X + T6a; + TfV = T6a - T5X; + Tbm = Tbk - Tbl; + Tdn = Tbl + Tbk; + TaF = Tax - TaE; + Tdy = Tax + TaE; + T4q = W[8]; + } + T4t = W[9]; + T4K = ri[WS(rs, 53)]; + T4N = ii[WS(rs, 53)]; + T9U = T4q * T4u; + T4s = T4q * T4r; + T4J = W[104]; + T4M = W[105]; + T9V = FNMS(T4t, T4r, T9U); + T4v = FMA(T4t, T4u, T4s); + T9Q = T4J * T4N; + T4L = T4J * T4K; + } + { + E T4x, T4A, T4w, T4z, T9W, T4y, T4D; + T4x = ri[WS(rs, 37)]; + T4A = ii[WS(rs, 37)]; + T9R = FNMS(T4M, T4K, T9Q); + T4O = FMA(T4M, T4N, T4L); + T4w = W[72]; + T4z = W[73]; + T4E = ri[WS(rs, 21)]; + T4H = ii[WS(rs, 21)]; + T9W = T4w * T4A; + T4y = T4w * T4x; + T4D = W[40]; + T4G = W[41]; + T9X = FNMS(T4z, T4x, T9W); + T4B = FMA(T4z, T4A, T4y); + T9O = T4D * T4H; + T4F = T4D * T4E; + } + } + { + E T9Y, Tfw, T4C, T9N, T9P, T4I; + T9Y = T9V - T9X; + Tfw = T9V + T9X; + T4C = T4v + T4B; + T9N = T4v - T4B; + T9P = FNMS(T4G, T4E, T9O); + T4I = FMA(T4G, T4H, T4F); + { + E Tfx, T9S, T9Z, T4P; + Tfx = T9P + T9R; + T9S = T9P - T9R; + T9Z = T4I - T4O; + T4P = T4I + T4O; + T9T = T9N - T9S; + Td7 = T9N + T9S; + Tfy = Tfw - Tfx; + ThN = Tfw + Tfx; + Tfz = T4C - T4P; + T4Q = T4C + T4P; + Td6 = T9Y - T9Z; + Ta0 = T9Y + T9Z; + } + } + } + { + E T9G, T4W, T9C, T5f, T55, T58, T57, T9I, T52, T9z, T56; + { + E T5b, T5e, T5d, T9B, T5c; + { + E T4S, T4V, T4R, T4U, T9F, T4T, T5a; + T4S = ri[WS(rs, 61)]; + TfN = Tfz + Tfy; + TfA = Tfy - Tfz; + Taf = FMA(KP414213562, T9T, Ta0); + Ta1 = FNMS(KP414213562, Ta0, T9T); + Td8 = FNMS(KP414213562, Td7, Td6); + Tdh = FMA(KP414213562, Td6, Td7); + T4V = ii[WS(rs, 61)]; + T4R = W[120]; + T4U = W[121]; + T5b = ri[WS(rs, 45)]; + T5e = ii[WS(rs, 45)]; + T9F = T4R * T4V; + T4T = T4R * T4S; + T5a = W[88]; + T5d = W[89]; + T9G = FNMS(T4U, T4S, T9F); + T4W = FMA(T4U, T4V, T4T); + T9B = T5a * T5e; + T5c = T5a * T5b; + } + { + E T4Y, T51, T4X, T50, T9H, T4Z, T54; + T4Y = ri[WS(rs, 29)]; + T51 = ii[WS(rs, 29)]; + T9C = FNMS(T5d, T5b, T9B); + T5f = FMA(T5d, T5e, T5c); + T4X = W[56]; + T50 = W[57]; + T55 = ri[WS(rs, 13)]; + T58 = ii[WS(rs, 13)]; + T9H = T4X * T51; + T4Z = T4X * T4Y; + T54 = W[24]; + T57 = W[25]; + T9I = FNMS(T50, T4Y, T9H); + T52 = FMA(T50, T51, T4Z); + T9z = T54 * T58; + T56 = T54 * T55; + } + } + { + E T9J, TfC, T53, T9y, T9A, T59; + T9J = T9G - T9I; + TfC = T9G + T9I; + T53 = T4W + T52; + T9y = T4W - T52; + T9A = FNMS(T57, T55, T9z); + T59 = FMA(T57, T58, T56); + { + E TfD, T9D, T9K, T5g; + TfD = T9A + T9C; + T9D = T9A - T9C; + T9K = T59 - T5f; + T5g = T59 + T5f; + T9E = T9y - T9D; + Tda = T9y + T9D; + TfE = TfC - TfD; + ThO = TfC + TfD; + TfB = T53 - T5g; + T5h = T53 + T5g; + Td9 = T9J - T9K; + T9L = T9J + T9K; + } + } + } + } + { + E Tb2, Tdq, TfZ, Tg0, Tdp, Tb9; + { + E Tb4, T6i, Tb0, T6B, T6r, T6u, T6t, Tb6, T6o, TaX, T6s; + { + E T6x, T6A, T6z, TaZ, T6y; + { + E T6e, T6h, T6d, T6g, Tb3, T6f, T6w; + T6e = ri[WS(rs, 3)]; + TfO = TfB - TfE; + TfF = TfB + TfE; + Tag = FNMS(KP414213562, T9E, T9L); + T9M = FMA(KP414213562, T9L, T9E); + Tdb = FMA(KP414213562, Tda, Td9); + Tdi = FNMS(KP414213562, Td9, Tda); + T6h = ii[WS(rs, 3)]; + T6d = W[4]; + T6g = W[5]; + T6x = ri[WS(rs, 51)]; + T6A = ii[WS(rs, 51)]; + Tb3 = T6d * T6h; + T6f = T6d * T6e; + T6w = W[100]; + T6z = W[101]; + Tb4 = FNMS(T6g, T6e, Tb3); + T6i = FMA(T6g, T6h, T6f); + TaZ = T6w * T6A; + T6y = T6w * T6x; + } + { + E T6k, T6n, T6j, T6m, Tb5, T6l, T6q; + T6k = ri[WS(rs, 35)]; + T6n = ii[WS(rs, 35)]; + Tb0 = FNMS(T6z, T6x, TaZ); + T6B = FMA(T6z, T6A, T6y); + T6j = W[68]; + T6m = W[69]; + T6r = ri[WS(rs, 19)]; + T6u = ii[WS(rs, 19)]; + Tb5 = T6j * T6n; + T6l = T6j * T6k; + T6q = W[36]; + T6t = W[37]; + Tb6 = FNMS(T6m, T6k, Tb5); + T6o = FMA(T6m, T6n, T6l); + TaX = T6q * T6u; + T6s = T6q * T6r; + } + } + { + E Tb7, TfX, T6p, TaW, TaY, T6v; + Tb7 = Tb4 - Tb6; + TfX = Tb4 + Tb6; + T6p = T6i + T6o; + TaW = T6i - T6o; + TaY = FNMS(T6t, T6r, TaX); + T6v = FMA(T6t, T6u, T6s); + { + E TfY, Tb1, Tb8, T6C; + TfY = TaY + Tb0; + Tb1 = TaY - Tb0; + Tb8 = T6v - T6B; + T6C = T6v + T6B; + Tb2 = TaW - Tb1; + Tdq = TaW + Tb1; + TfZ = TfX - TfY; + ThY = TfX + TfY; + Tg0 = T6p - T6C; + T6D = T6p + T6C; + Tdp = Tb7 - Tb8; + Tb9 = Tb7 + Tb8; + } + } + } + { + E TaP, T6J, TaL, T72, T6S, T6V, T6U, TaR, T6P, TaI, T6T; + { + E T6Y, T71, T70, TaK, T6Z; + { + E T6F, T6I, T6E, T6H, TaO, T6G, T6X; + T6F = ri[WS(rs, 59)]; + Tge = Tg0 + TfZ; + Tg1 = TfZ - Tg0; + Tbo = FMA(KP414213562, Tb2, Tb9); + Tba = FNMS(KP414213562, Tb9, Tb2); + Tdr = FNMS(KP414213562, Tdq, Tdp); + TdA = FMA(KP414213562, Tdp, Tdq); + T6I = ii[WS(rs, 59)]; + T6E = W[116]; + T6H = W[117]; + T6Y = ri[WS(rs, 43)]; + T71 = ii[WS(rs, 43)]; + TaO = T6E * T6I; + T6G = T6E * T6F; + T6X = W[84]; + T70 = W[85]; + TaP = FNMS(T6H, T6F, TaO); + T6J = FMA(T6H, T6I, T6G); + TaK = T6X * T71; + T6Z = T6X * T6Y; + } + { + E T6L, T6O, T6K, T6N, TaQ, T6M, T6R; + T6L = ri[WS(rs, 27)]; + T6O = ii[WS(rs, 27)]; + TaL = FNMS(T70, T6Y, TaK); + T72 = FMA(T70, T71, T6Z); + T6K = W[52]; + T6N = W[53]; + T6S = ri[WS(rs, 11)]; + T6V = ii[WS(rs, 11)]; + TaQ = T6K * T6O; + T6M = T6K * T6L; + T6R = W[20]; + T6U = W[21]; + TaR = FNMS(T6N, T6L, TaQ); + T6P = FMA(T6N, T6O, T6M); + TaI = T6R * T6V; + T6T = T6R * T6S; + } + } + { + E TaS, Tg3, T6Q, TaH, TaJ, T6W; + TaS = TaP - TaR; + Tg3 = TaP + TaR; + T6Q = T6J + T6P; + TaH = T6J - T6P; + TaJ = FNMS(T6U, T6S, TaI); + T6W = FMA(T6U, T6V, T6T); + { + E Tg4, TaM, TaT, T73; + Tg4 = TaJ + TaL; + TaM = TaJ - TaL; + TaT = T6W - T72; + T73 = T6W + T72; + TaN = TaH - TaM; + Tdt = TaH + TaM; + Tg5 = Tg3 - Tg4; + ThZ = Tg3 + Tg4; + Tg2 = T6Q - T73; + T74 = T6Q + T73; + Tds = TaS - TaT; + TaU = TaS + TaT; + } + } + } + } + } + } + { + E Tgf, Tg6, Tbp, TaV, Tdu, TdB, Tje, Tjd, TjO, TjN; + { + E Thq, Tj7, Thy, ThA, Tht, Tj8, Thx, ThD, ThX, ThV, ThU, Ti0, ThM, ThK, ThJ; + E ThP, TiI, TiZ, TiL, Tj0; + { + E Tio, T1I, Tj1, T3v, Tj2, TiX, TiN, Tir, T76, TiK, TiC, TiG, T5j, Tit, Tiw; + E TiJ; + { + E TiO, TiW, Tip, Tiq; + { + E TO, T1H, T2B, T3u; + Thq = Tm - TN; + TO = Tm + TN; + Tgf = Tg2 - Tg5; + Tg6 = Tg2 + Tg5; + Tbp = FNMS(KP414213562, TaN, TaU); + TaV = FMA(KP414213562, TaU, TaN); + Tdu = FMA(KP414213562, Tdt, Tds); + TdB = FNMS(KP414213562, Tds, Tdt); + T1H = T1f + T1G; + Tj7 = T1G - T1f; + Thy = T29 - T2A; + T2B = T29 + T2A; + T3u = T32 + T3t; + ThA = T32 - T3t; + Tht = Thr - Ths; + TiO = Thr + Ths; + Tio = TO - T1H; + T1I = TO + T1H; + Tj1 = T3u - T2B; + T3v = T2B + T3u; + TiW = TiP + TiV; + Tj8 = TiV - TiP; + } + Thx = Thv - Thw; + Tip = Thv + Thw; + Tiq = ThB + ThC; + ThD = ThB - ThC; + { + E T6c, T75, Tiz, TiA; + ThX = T5K - T6b; + T6c = T5K + T6b; + Tj2 = TiW - TiO; + TiX = TiO + TiW; + TiN = Tip + Tiq; + Tir = Tip - Tiq; + T75 = T6D + T74; + ThV = T74 - T6D; + ThU = ThS - ThT; + Tiz = ThS + ThT; + TiA = ThY + ThZ; + Ti0 = ThY - ThZ; + { + E T4p, Tiy, TiB, T5i, Tiu, Tiv; + ThM = T3X - T4o; + T4p = T3X + T4o; + T76 = T6c + T75; + Tiy = T6c - T75; + TiK = Tiz + TiA; + TiB = Tiz - TiA; + T5i = T4Q + T5h; + ThK = T5h - T4Q; + ThJ = ThH - ThI; + Tiu = ThH + ThI; + Tiv = ThN + ThO; + ThP = ThN - ThO; + TiC = Tiy - TiB; + TiG = Tiy + TiB; + T5j = T4p + T5i; + Tit = T4p - T5i; + Tiw = Tiu - Tiv; + TiJ = Tiu + Tiv; + } + } + } + { + E TiE, Tis, TiD, Tj6, Tj5, Tj3, Tj4, TiH; + { + E T3w, TiF, Tix, T77, TiM, TiY; + TiI = T1I - T3v; + T3w = T1I + T3v; + TiF = Tiw - Tit; + Tix = Tit + Tiw; + T77 = T5j + T76; + TiZ = T76 - T5j; + TiL = TiJ - TiK; + TiM = TiJ + TiK; + TiY = TiN + TiX; + Tj0 = TiX - TiN; + TiE = Tio - Tir; + Tis = Tio + Tir; + ri[0] = T3w + T77; + ri[WS(rs, 32)] = T3w - T77; + ii[WS(rs, 32)] = TiY - TiM; + ii[0] = TiM + TiY; + TiD = Tix + TiC; + Tj6 = TiC - Tix; + Tj5 = Tj2 - Tj1; + Tj3 = Tj1 + Tj2; + Tj4 = TiF + TiG; + TiH = TiF - TiG; + } + ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); + ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis); + ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3); + ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3); + ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE); + ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE); + ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5); + ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5); + } + } + { + E Ti8, Thu, Tjf, Tj9, Tib, Tjg, Tja, ThF, Tih, ThW, Tif, Til, Ti5, ThR; + ri[WS(rs, 16)] = TiI + TiL; + ri[WS(rs, 48)] = TiI - TiL; + ii[WS(rs, 48)] = Tj0 - TiZ; + ii[WS(rs, 16)] = TiZ + Tj0; + Ti8 = Thq + Tht; + Thu = Thq - Tht; + Tjf = Tj8 - Tj7; + Tj9 = Tj7 + Tj8; + { + E Tie, ThL, Tid, ThQ; + { + E Ti9, Thz, Tia, ThE; + Ti9 = Thy + Thx; + Thz = Thx - Thy; + Tia = ThA - ThD; + ThE = ThA + ThD; + Tib = Ti9 + Tia; + Tjg = Tia - Ti9; + Tja = Thz + ThE; + ThF = Thz - ThE; + Tie = ThJ + ThK; + ThL = ThJ - ThK; + } + Tid = ThM + ThP; + ThQ = ThM - ThP; + Tih = ThU + ThV; + ThW = ThU - ThV; + Tif = FMA(KP414213562, Tie, Tid); + Til = FNMS(KP414213562, Tid, Tie); + Ti5 = FNMS(KP414213562, ThL, ThQ); + ThR = FMA(KP414213562, ThQ, ThL); + } + { + E Ti4, ThG, Tjh, Tjj, Tig, Ti1; + Ti4 = FNMS(KP707106781, ThF, Thu); + ThG = FMA(KP707106781, ThF, Thu); + Tjh = FMA(KP707106781, Tjg, Tjf); + Tjj = FNMS(KP707106781, Tjg, Tjf); + Tig = ThX + Ti0; + Ti1 = ThX - Ti0; + { + E Tik, Tjb, Tjc, Tin; + { + E Tic, Tim, Ti6, Ti2, Tij, Tii; + Tik = FNMS(KP707106781, Tib, Ti8); + Tic = FMA(KP707106781, Tib, Ti8); + Tii = FNMS(KP414213562, Tih, Tig); + Tim = FMA(KP414213562, Tig, Tih); + Ti6 = FMA(KP414213562, ThW, Ti1); + Ti2 = FNMS(KP414213562, Ti1, ThW); + Tij = Tif + Tii; + Tje = Tii - Tif; + Tjd = FNMS(KP707106781, Tja, Tj9); + Tjb = FMA(KP707106781, Tja, Tj9); + { + E Ti7, Tji, Tjk, Ti3; + Ti7 = Ti5 + Ti6; + Tji = Ti6 - Ti5; + Tjk = ThR + Ti2; + Ti3 = ThR - Ti2; + ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic); + ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic); + ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4); + ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4); + ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh); + ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh); + ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj); + ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj); + ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG); + ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG); + Tjc = Til + Tim; + Tin = Til - Tim; + } + } + ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb); + ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb); + ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik); + ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik); + } + } + } + } + { + E TjD, TjJ, Tgo, Tf2, Tjp, Tjv, Tha, TgI, Tgd, Tgr, Tjw, Tjq, Tfp, Tgg, Thk; + E Tho, Th8, Th4, Tgv, TgB, Tgl, TfR, TjE, Thd, TjK, TgP, Tgx, Tg8, Thh, Thn; + E Th7, TgX; + { + E TgJ, TgK, TgM, TgN, Tg7, TfW, Th1, Thj, Th0, Th2; + { + E TgE, TeQ, TjB, Tjn, TgF, TgG, TjC, Tf1, TeV, Tf0; + TgE = TeM - TeP; + TeQ = TeM + TeP; + TjB = Tjm - Tjl; + Tjn = Tjl + Tjm; + TgF = TeU - TeR; + TeV = TeR + TeU; + ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd); + ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd); + Tf0 = TeW - TeZ; + TgG = TeW + TeZ; + TjC = Tf0 - TeV; + Tf1 = TeV + Tf0; + { + E Tfi, Tgp, Tfd, Tfn; + { + E Tf7, Tjo, TgH, Tfc; + TgJ = Tf5 - Tf6; + Tf7 = Tf5 + Tf6; + TjD = FMA(KP707106781, TjC, TjB); + TjJ = FNMS(KP707106781, TjC, TjB); + Tgo = FMA(KP707106781, Tf1, TeQ); + Tf2 = FNMS(KP707106781, Tf1, TeQ); + Tjo = TgF + TgG; + TgH = TgF - TgG; + Tfc = Tf8 + Tfb; + TgK = Tf8 - Tfb; + TgM = Tfg - Tfh; + Tfi = Tfg + Tfh; + Tjp = FMA(KP707106781, Tjo, Tjn); + Tjv = FNMS(KP707106781, Tjo, Tjn); + Tha = FNMS(KP707106781, TgH, TgE); + TgI = FMA(KP707106781, TgH, TgE); + Tgp = FMA(KP414213562, Tf7, Tfc); + Tfd = FNMS(KP414213562, Tfc, Tf7); + Tfn = Tfj + Tfm; + TgN = Tfj - Tfm; + } + { + E TgY, TgZ, Tgq, Tfo; + Tgd = Tg9 + Tgc; + TgY = Tg9 - Tgc; + TgZ = Tg6 - Tg1; + Tg7 = Tg1 + Tg6; + TfW = TfU + TfV; + Th1 = TfU - TfV; + Tgq = FNMS(KP414213562, Tfi, Tfn); + Tfo = FMA(KP414213562, Tfn, Tfi); + Thj = FMA(KP707106781, TgZ, TgY); + Th0 = FNMS(KP707106781, TgZ, TgY); + Tgr = Tgp + Tgq; + Tjw = Tgq - Tgp; + Tjq = Tfd + Tfo; + Tfp = Tfd - Tfo; + Th2 = Tge - Tgf; + Tgg = Tge + Tgf; + } + } + } + { + E TgU, TgS, TgR, TgV, Thb, TgL; + { + E TfM, Tgu, TfH, TfP, Tgt, TfQ; + { + E Tfv, TfG, Thi, Th3; + TgU = Tft - Tfu; + Tfv = Tft + Tfu; + TfG = TfA + TfF; + TgS = TfF - TfA; + TgR = TfI - TfL; + TfM = TfI + TfL; + Thi = FMA(KP707106781, Th2, Th1); + Th3 = FNMS(KP707106781, Th2, Th1); + Tgu = FMA(KP707106781, TfG, Tfv); + TfH = FNMS(KP707106781, TfG, Tfv); + Thk = FNMS(KP198912367, Thj, Thi); + Tho = FMA(KP198912367, Thi, Thj); + Th8 = FMA(KP668178637, Th0, Th3); + Th4 = FNMS(KP668178637, Th3, Th0); + TfP = TfN + TfO; + TgV = TfN - TfO; + } + Tgt = FMA(KP707106781, TfP, TfM); + TfQ = FNMS(KP707106781, TfP, TfM); + Thb = FNMS(KP414213562, TgJ, TgK); + TgL = FMA(KP414213562, TgK, TgJ); + Tgv = FMA(KP198912367, Tgu, Tgt); + TgB = FNMS(KP198912367, Tgt, Tgu); + Tgl = FNMS(KP668178637, TfH, TfQ); + TfR = FMA(KP668178637, TfQ, TfH); + } + { + E Thg, TgT, Thc, TgO, Thf, TgW; + Thc = FMA(KP414213562, TgM, TgN); + TgO = FNMS(KP414213562, TgN, TgM); + Thg = FMA(KP707106781, TgS, TgR); + TgT = FNMS(KP707106781, TgS, TgR); + TjE = Thc - Thb; + Thd = Thb + Thc; + TjK = TgL + TgO; + TgP = TgL - TgO; + Thf = FMA(KP707106781, TgV, TgU); + TgW = FNMS(KP707106781, TgV, TgU); + Tgx = FMA(KP707106781, Tg7, TfW); + Tg8 = FNMS(KP707106781, Tg7, TfW); + Thh = FMA(KP198912367, Thg, Thf); + Thn = FNMS(KP198912367, Thf, Thg); + Th7 = FNMS(KP668178637, TgT, TgW); + TgX = FMA(KP668178637, TgW, TgT); + } + } + } + { + E Tju, Tjt, TjI, TjH; + { + E Tgk, Tfq, Tjx, Tjz, Tgw, Tgh; + Tgk = FNMS(KP923879532, Tfp, Tf2); + Tfq = FMA(KP923879532, Tfp, Tf2); + Tjx = FMA(KP923879532, Tjw, Tjv); + Tjz = FNMS(KP923879532, Tjw, Tjv); + Tgw = FMA(KP707106781, Tgg, Tgd); + Tgh = FNMS(KP707106781, Tgg, Tgd); + { + E TgA, Tjr, Tjs, TgD; + { + E Tgs, TgC, Tgm, Tgi, Tgz, Tgy; + TgA = FNMS(KP923879532, Tgr, Tgo); + Tgs = FMA(KP923879532, Tgr, Tgo); + Tgy = FNMS(KP198912367, Tgx, Tgw); + TgC = FMA(KP198912367, Tgw, Tgx); + Tgm = FMA(KP668178637, Tg8, Tgh); + Tgi = FNMS(KP668178637, Tgh, Tg8); + Tgz = Tgv + Tgy; + Tju = Tgy - Tgv; + Tjt = FNMS(KP923879532, Tjq, Tjp); + Tjr = FMA(KP923879532, Tjq, Tjp); + { + E Tgn, Tjy, TjA, Tgj; + Tgn = Tgl + Tgm; + Tjy = Tgm - Tgl; + TjA = TfR + Tgi; + Tgj = TfR - Tgi; + ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs); + ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs); + ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk); + ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk); + ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx); + ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx); + ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz); + ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz); + ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq); + ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq); + Tjs = TgB + TgC; + TgD = TgB - TgC; + } + } + ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr); + ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr); + ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA); + ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA); + } + } + { + E Th6, TjF, TjG, Th9, TgQ, Th5; + Th6 = FNMS(KP923879532, TgP, TgI); + TgQ = FMA(KP923879532, TgP, TgI); + Th5 = TgX + Th4; + TjI = Th4 - TgX; + TjH = FNMS(KP923879532, TjE, TjD); + TjF = FMA(KP923879532, TjE, TjD); + ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt); + ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt); + ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ); + ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ); + TjG = Th7 + Th8; + Th9 = Th7 - Th8; + ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF); + ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF); + ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6); + ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6); + } + { + E Thm, TjL, TjM, Thp, The, Thl; + Thm = FMA(KP923879532, Thd, Tha); + The = FNMS(KP923879532, Thd, Tha); + Thl = Thh - Thk; + TjO = Thh + Thk; + TjN = FMA(KP923879532, TjK, TjJ); + TjL = FNMS(KP923879532, TjK, TjJ); + ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH); + ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH); + ri[WS(rs, 14)] = FMA(KP980785280, Thl, The); + ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The); + TjM = Tho - Thn; + Thp = Thn + Tho; + ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL); + ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL); + ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm); + ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm); + } + } + } + { + E TjS, TcD, Tcw, TkO, TkN, Tcz; + { + E TbB, Tkw, Tkq, T99, TbF, TbL, Tbv, Taj, Tcu, Tcy, Tci, Tce, Tcr, Tcx, Tch; + E Tc7, TkE, Tcn, TkK, TbZ, TbP, T7J, TbO, T7u, TkB, Tkn, TbI, TbM, Tbw, Tbs; + E T7Y, TbQ; + { + E TbT, TbU, TbW, TbX, Tc4, Tc2, Tc1, Tc5, Tbn, Tbb, TaG, Tcb, Tct, Tca, Tcc; + E Tbq, Tcl, TbV; + { + E T8W, Tbz, T8z, T97, T8n, T8y; + TbT = FMA(KP707106781, T8m, T87); + T8n = FNMS(KP707106781, T8m, T87); + T8y = FNMS(KP707106781, T8x, T8u); + TbU = FMA(KP707106781, T8x, T8u); + TbW = FMA(KP707106781, T8V, T8G); + T8W = FNMS(KP707106781, T8V, T8G); + ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN); + ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN); + Tbz = FMA(KP668178637, T8n, T8y); + T8z = FNMS(KP668178637, T8y, T8n); + T97 = FNMS(KP707106781, T96, T93); + TbX = FMA(KP707106781, T96, T93); + { + E Tae, TbE, Ta3, Tah; + { + E T9x, Ta2, TbA, T98; + Tc4 = FMA(KP707106781, T9w, T9h); + T9x = FNMS(KP707106781, T9w, T9h); + Ta2 = T9M - Ta1; + Tc2 = Ta1 + T9M; + Tc1 = FMA(KP707106781, Tad, Taa); + Tae = FNMS(KP707106781, Tad, Taa); + TbA = FNMS(KP668178637, T8W, T97); + T98 = FMA(KP668178637, T97, T8W); + TbE = FMA(KP923879532, Ta2, T9x); + Ta3 = FNMS(KP923879532, Ta2, T9x); + TbB = Tbz + TbA; + Tkw = TbA - Tbz; + Tkq = T8z + T98; + T99 = T8z - T98; + Tah = Taf - Tag; + Tc5 = Taf + Tag; + } + { + E Tc8, Tc9, TbD, Tai; + Tbn = FNMS(KP707106781, Tbm, Tbj); + Tc8 = FMA(KP707106781, Tbm, Tbj); + Tc9 = Tba + TaV; + Tbb = TaV - Tba; + TaG = FNMS(KP707106781, TaF, Taq); + Tcb = FMA(KP707106781, TaF, Taq); + TbD = FMA(KP923879532, Tah, Tae); + Tai = FNMS(KP923879532, Tah, Tae); + Tct = FMA(KP923879532, Tc9, Tc8); + Tca = FNMS(KP923879532, Tc9, Tc8); + TbF = FMA(KP303346683, TbE, TbD); + TbL = FNMS(KP303346683, TbD, TbE); + Tbv = FNMS(KP534511135, Ta3, Tai); + Taj = FMA(KP534511135, Tai, Ta3); + Tcc = Tbo + Tbp; + Tbq = Tbo - Tbp; + } + } + } + { + E Tcq, Tc3, Tcs, Tcd, Tcp, Tc6; + Tcs = FMA(KP923879532, Tcc, Tcb); + Tcd = FNMS(KP923879532, Tcc, Tcb); + Tcq = FMA(KP923879532, Tc2, Tc1); + Tc3 = FNMS(KP923879532, Tc2, Tc1); + Tcu = FNMS(KP098491403, Tct, Tcs); + Tcy = FMA(KP098491403, Tcs, Tct); + Tci = FMA(KP820678790, Tca, Tcd); + Tce = FNMS(KP820678790, Tcd, Tca); + Tcp = FMA(KP923879532, Tc5, Tc4); + Tc6 = FNMS(KP923879532, Tc5, Tc4); + Tcl = FNMS(KP198912367, TbT, TbU); + TbV = FMA(KP198912367, TbU, TbT); + Tcr = FMA(KP098491403, Tcq, Tcp); + Tcx = FNMS(KP098491403, Tcp, Tcq); + Tch = FNMS(KP820678790, Tc3, Tc6); + Tc7 = FMA(KP820678790, Tc6, Tc3); + } + { + E TbH, Tbc, Tcm, TbY; + Tcm = FMA(KP198912367, TbW, TbX); + TbY = FNMS(KP198912367, TbX, TbW); + TbH = FMA(KP923879532, Tbb, TaG); + Tbc = FNMS(KP923879532, Tbb, TaG); + TkE = Tcm - Tcl; + Tcn = Tcl + Tcm; + TkK = TbV + TbY; + TbZ = TbV - TbY; + { + E T7t, Tkm, TbG, Tbr; + TjS = T7l + T7s; + T7t = T7l - T7s; + Tkm = TcC - TcB; + TcD = TcB + TcC; + TbP = FNMS(KP414213562, T7B, T7I); + T7J = FMA(KP414213562, T7I, T7B); + TbG = FMA(KP923879532, Tbq, Tbn); + Tbr = FNMS(KP923879532, Tbq, Tbn); + TbO = FNMS(KP707106781, T7t, T7e); + T7u = FMA(KP707106781, T7t, T7e); + TkB = FNMS(KP707106781, Tkm, Tkl); + Tkn = FMA(KP707106781, Tkm, Tkl); + TbI = FNMS(KP303346683, TbH, TbG); + TbM = FMA(KP303346683, TbG, TbH); + Tbw = FMA(KP534511135, Tbc, Tbr); + Tbs = FNMS(KP534511135, Tbr, Tbc); + T7Y = FNMS(KP414213562, T7X, T7Q); + TbQ = FMA(KP414213562, T7Q, T7X); + } + } + } + { + E TkJ, TkD, Tck, TbS, TbK, Tku, Tkt, TbN; + { + E TkA, Tby, Tkp, Tbu, Tkz, Tbx; + { + E Tbt, T9a, Tkx, Tky, Tkv; + TkA = Taj + Tbs; + Tbt = Taj - Tbs; + { + E TkC, T7Z, Tko, TbR, T80; + TkC = T7J + T7Y; + T7Z = T7J - T7Y; + Tko = TbQ - TbP; + TbR = TbP + TbQ; + TkJ = FMA(KP923879532, TkC, TkB); + TkD = FNMS(KP923879532, TkC, TkB); + Tby = FMA(KP923879532, T7Z, T7u); + T80 = FNMS(KP923879532, T7Z, T7u); + Tkv = FNMS(KP923879532, Tko, Tkn); + Tkp = FMA(KP923879532, Tko, Tkn); + Tck = FMA(KP923879532, TbR, TbO); + TbS = FNMS(KP923879532, TbR, TbO); + T9a = FMA(KP831469612, T99, T80); + Tbu = FNMS(KP831469612, T99, T80); + } + Tkz = FNMS(KP831469612, Tkw, Tkv); + Tkx = FMA(KP831469612, Tkw, Tkv); + Tky = Tbw - Tbv; + Tbx = Tbv + Tbw; + ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a); + ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a); + ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx); + ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx); + } + { + E TbC, TbJ, Tkr, Tks; + TbK = FNMS(KP831469612, TbB, Tby); + TbC = FMA(KP831469612, TbB, Tby); + ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu); + ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu); + ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz); + ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz); + TbJ = TbF + TbI; + Tku = TbI - TbF; + Tkt = FNMS(KP831469612, Tkq, Tkp); + Tkr = FMA(KP831469612, Tkq, Tkp); + Tks = TbL + TbM; + TbN = TbL - TbM; + ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC); + ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC); + ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr); + ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr); + } + } + { + E Tcg, TkI, TkH, Tcj; + { + E Tc0, Tcf, TkF, TkG; + Tcg = FNMS(KP980785280, TbZ, TbS); + Tc0 = FMA(KP980785280, TbZ, TbS); + ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK); + ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK); + ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt); + ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt); + Tcf = Tc7 + Tce; + TkI = Tce - Tc7; + TkH = FNMS(KP980785280, TkE, TkD); + TkF = FMA(KP980785280, TkE, TkD); + TkG = Tch + Tci; + Tcj = Tch - Tci; + ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0); + ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0); + ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF); + ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF); + } + { + E Tco, Tcv, TkL, TkM; + Tcw = FMA(KP980785280, Tcn, Tck); + Tco = FNMS(KP980785280, Tcn, Tck); + ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg); + ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg); + ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH); + ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH); + Tcv = Tcr - Tcu; + TkO = Tcr + Tcu; + TkN = FMA(KP980785280, TkK, TkJ); + TkL = FNMS(KP980785280, TkK, TkJ); + TkM = Tcy - Tcx; + Tcz = Tcx + Tcy; + ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco); + ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco); + ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL); + ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL); + } + } + } + } + { + E TdN, Tk2, TjW, Td1, TdR, TdX, TdH, Tdl, TeG, TeK, Teu, Teq, TeD, TeJ, Tet; + E Tej, Tka, Tez, Tkg, Teb, Te1, TcH, Te0, TcE, Tk7, TjT, TdU, TdY, TdI, TdE; + E TcK, Te2; + { + E Te5, Te6, Te8, Te9, Teg, Tee, Ted, Teh, Tdz, Tdv, Tdo, Ten, TeF, Tem, Teo; + E TdC, Tex, Te7; + { + E TcP, TcS, TcW, TcZ; + Te5 = FNMS(KP707106781, TcO, TcN); + TcP = FMA(KP707106781, TcO, TcN); + ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw); + ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw); + ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN); + ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN); + TcS = FMA(KP707106781, TcR, TcQ); + Te6 = FNMS(KP707106781, TcR, TcQ); + Te8 = FNMS(KP707106781, TcV, TcU); + TcW = FMA(KP707106781, TcV, TcU); + TcZ = FMA(KP707106781, TcY, TcX); + Te9 = FNMS(KP707106781, TcY, TcX); + { + E Tdg, TdQ, Tdd, Tdj; + { + E Td5, TdL, TcT, TdM, Td0, Tdc; + Teg = FNMS(KP707106781, Td4, Td3); + Td5 = FMA(KP707106781, Td4, Td3); + TdL = FMA(KP198912367, TcP, TcS); + TcT = FNMS(KP198912367, TcS, TcP); + TdM = FNMS(KP198912367, TcW, TcZ); + Td0 = FMA(KP198912367, TcZ, TcW); + Tdc = Td8 + Tdb; + Tee = Tdb - Td8; + Ted = FNMS(KP707106781, Tdf, Tde); + Tdg = FMA(KP707106781, Tdf, Tde); + TdN = TdL + TdM; + Tk2 = TdM - TdL; + TjW = TcT + Td0; + Td1 = TcT - Td0; + TdQ = FMA(KP923879532, Tdc, Td5); + Tdd = FNMS(KP923879532, Tdc, Td5); + Tdj = Tdh + Tdi; + Teh = Tdh - Tdi; + } + { + E Tek, Tel, TdP, Tdk; + Tdz = FMA(KP707106781, Tdy, Tdx); + Tek = FNMS(KP707106781, Tdy, Tdx); + Tel = Tdu - Tdr; + Tdv = Tdr + Tdu; + Tdo = FMA(KP707106781, Tdn, Tdm); + Ten = FNMS(KP707106781, Tdn, Tdm); + TdP = FMA(KP923879532, Tdj, Tdg); + Tdk = FNMS(KP923879532, Tdj, Tdg); + TeF = FMA(KP923879532, Tel, Tek); + Tem = FNMS(KP923879532, Tel, Tek); + TdR = FMA(KP098491403, TdQ, TdP); + TdX = FNMS(KP098491403, TdP, TdQ); + TdH = FNMS(KP820678790, Tdd, Tdk); + Tdl = FMA(KP820678790, Tdk, Tdd); + Teo = TdA - TdB; + TdC = TdA + TdB; + } + } + } + { + E TeC, Tef, TeE, Tep, TeB, Tei; + TeE = FMA(KP923879532, Teo, Ten); + Tep = FNMS(KP923879532, Teo, Ten); + TeC = FMA(KP923879532, Tee, Ted); + Tef = FNMS(KP923879532, Tee, Ted); + TeG = FNMS(KP303346683, TeF, TeE); + TeK = FMA(KP303346683, TeE, TeF); + Teu = FMA(KP534511135, Tem, Tep); + Teq = FNMS(KP534511135, Tep, Tem); + TeB = FMA(KP923879532, Teh, Teg); + Tei = FNMS(KP923879532, Teh, Teg); + Tex = FNMS(KP668178637, Te5, Te6); + Te7 = FMA(KP668178637, Te6, Te5); + TeD = FMA(KP303346683, TeC, TeB); + TeJ = FNMS(KP303346683, TeB, TeC); + Tet = FNMS(KP534511135, Tef, Tei); + Tej = FMA(KP534511135, Tei, Tef); + } + { + E TdT, Tdw, Tey, Tea, TdS, TdD; + Tey = FMA(KP668178637, Te8, Te9); + Tea = FNMS(KP668178637, Te9, Te8); + TdT = FMA(KP923879532, Tdv, Tdo); + Tdw = FNMS(KP923879532, Tdv, Tdo); + Tka = Tey - Tex; + Tez = Tex + Tey; + Tkg = Te7 + Tea; + Teb = Te7 - Tea; + Te1 = FNMS(KP414213562, TcF, TcG); + TcH = FMA(KP414213562, TcG, TcF); + TdS = FMA(KP923879532, TdC, Tdz); + TdD = FNMS(KP923879532, TdC, Tdz); + Te0 = FNMS(KP707106781, TcD, TcA); + TcE = FMA(KP707106781, TcD, TcA); + Tk7 = FNMS(KP707106781, TjS, TjR); + TjT = FMA(KP707106781, TjS, TjR); + TdU = FNMS(KP098491403, TdT, TdS); + TdY = FMA(KP098491403, TdS, TdT); + TdI = FMA(KP820678790, Tdw, TdD); + TdE = FNMS(KP820678790, TdD, Tdw); + TcK = FNMS(KP414213562, TcJ, TcI); + Te2 = FMA(KP414213562, TcI, TcJ); + } + } + { + E Tkf, Tk9, Tew, Te4, TdW, Tk0, TjZ, TdZ; + { + E Tk6, TdK, TjV, TdG, Tk5, TdJ; + { + E TdF, Td2, Tk3, Tk4, Tk1; + Tk6 = Tdl + TdE; + TdF = Tdl - TdE; + { + E Tk8, TcL, TjU, Te3, TcM; + Tk8 = TcK - TcH; + TcL = TcH + TcK; + TjU = Te1 + Te2; + Te3 = Te1 - Te2; + Tkf = FNMS(KP923879532, Tk8, Tk7); + Tk9 = FMA(KP923879532, Tk8, Tk7); + TdK = FMA(KP923879532, TcL, TcE); + TcM = FNMS(KP923879532, TcL, TcE); + Tk1 = FNMS(KP923879532, TjU, TjT); + TjV = FMA(KP923879532, TjU, TjT); + Tew = FNMS(KP923879532, Te3, Te0); + Te4 = FMA(KP923879532, Te3, Te0); + Td2 = FMA(KP980785280, Td1, TcM); + TdG = FNMS(KP980785280, Td1, TcM); + } + Tk5 = FNMS(KP980785280, Tk2, Tk1); + Tk3 = FMA(KP980785280, Tk2, Tk1); + Tk4 = TdI - TdH; + TdJ = TdH + TdI; + ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2); + ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2); + ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3); + ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3); + } + { + E TdO, TdV, TjX, TjY; + TdW = FNMS(KP980785280, TdN, TdK); + TdO = FMA(KP980785280, TdN, TdK); + ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG); + ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG); + ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5); + ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5); + TdV = TdR + TdU; + Tk0 = TdU - TdR; + TjZ = FNMS(KP980785280, TjW, TjV); + TjX = FMA(KP980785280, TjW, TjV); + TjY = TdX + TdY; + TdZ = TdX - TdY; + ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO); + ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO); + ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX); + ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX); + } + } + { + E Tes, Tke, Tkd, Tev; + { + E Tec, Ter, Tkb, Tkc; + Tes = FNMS(KP831469612, Teb, Te4); + Tec = FMA(KP831469612, Teb, Te4); + ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW); + ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW); + ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ); + ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ); + Ter = Tej + Teq; + Tke = Teq - Tej; + Tkd = FNMS(KP831469612, Tka, Tk9); + Tkb = FMA(KP831469612, Tka, Tk9); + Tkc = Tet + Teu; + Tev = Tet - Teu; + ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); + ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec); + ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb); + ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb); + } + { + E TeA, TeH, Tkh, Tki; + TeI = FMA(KP831469612, Tez, Tew); + TeA = FNMS(KP831469612, Tez, Tew); + ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes); + ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes); + ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd); + ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd); + TeH = TeD - TeG; + Tkk = TeD + TeG; + Tkj = FMA(KP831469612, Tkg, Tkf); + Tkh = FNMS(KP831469612, Tkg, Tkf); + Tki = TeK - TeJ; + TeL = TeJ + TeK; + ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA); + ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA); + ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh); + ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh); + } + } + } + } + } + } + } + ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI); + ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI); + ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj); + ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 64}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 }; + +void X(codelet_t1_64) (planner *p) { + X(kdft_dit_register) (p, t1_64, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include t.h */ + +/* + * This function contains 1038 FP additions, 500 FP multiplications, + * (or, 808 additions, 270 multiplications, 230 fused multiply/add), + * 176 stack variables, 15 constants, and 256 memory accesses + */ +#include "t.h" + +static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP471396736, +0.471396736825997648556387625905254377657460319); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP290284677, +0.290284677254462367636192375817395274691476278); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP634393284, +0.634393284163645498215171613225493370675687095); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP098017140, +0.098017140329560601994195563888641845861136673); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { + E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; + E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; + E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; + E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; + E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; + E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; + E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; + E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; + E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; + { + E T1, TgR, T6, TgQ, Tc, T68, Th, T69; + T1 = ri[0]; + TgR = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 32)]; + T5 = ii[WS(rs, 32)]; + T2 = W[62]; + T4 = W[63]; + T6 = FMA(T2, T3, T4 * T5); + TgQ = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = ri[WS(rs, 16)]; + Tb = ii[WS(rs, 16)]; + T8 = W[30]; + Ta = W[31]; + Tc = FMA(T8, T9, Ta * Tb); + T68 = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 48)]; + Tg = ii[WS(rs, 48)]; + Td = W[94]; + Tf = W[95]; + Th = FMA(Td, Te, Tf * Tg); + T69 = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, ThR, ThS; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 + Ti; + TcL = T7 - Ti; + ThR = TgR - TgQ; + ThS = Tc - Th; + ThT = ThR - ThS; + Tin = ThS + ThR; + } + { + E T67, T6a, TgP, TgS; + T67 = T1 - T6; + T6a = T68 - T69; + T6b = T67 - T6a; + Taz = T67 + T6a; + TgP = T68 + T69; + TgS = TgQ + TgR; + TgT = TgP + TgS; + Thn = TgS - TgP; + } + } + { + E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; + { + E Tl, Tn, Tk, Tm; + Tl = ri[WS(rs, 8)]; + Tn = ii[WS(rs, 8)]; + Tk = W[14]; + Tm = W[15]; + To = FMA(Tk, Tl, Tm * Tn); + T6c = FNMS(Tm, Tl, Tk * Tn); + } + { + E Tq, Ts, Tp, Tr; + Tq = ri[WS(rs, 40)]; + Ts = ii[WS(rs, 40)]; + Tp = W[78]; + Tr = W[79]; + Tt = FMA(Tp, Tq, Tr * Ts); + T6d = FNMS(Tr, Tq, Tp * Ts); + } + T6e = T6c - T6d; + T6f = To - Tt; + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(rs, 56)]; + Ty = ii[WS(rs, 56)]; + Tv = W[110]; + Tx = W[111]; + Tz = FMA(Tv, Tw, Tx * Ty); + T6i = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = ri[WS(rs, 24)]; + TD = ii[WS(rs, 24)]; + TA = W[46]; + TC = W[47]; + TE = FMA(TA, TB, TC * TD); + T6j = FNMS(TC, TB, TA * TD); + } + T6h = Tz - TE; + T6k = T6i - T6j; + { + E Tu, TF, TcM, TcN; + Tu = To + Tt; + TF = Tz + TE; + TG = Tu + TF; + Thm = TF - Tu; + TcM = T6c + T6d; + TcN = T6i + T6j; + TcO = TcM - TcN; + TgO = TcM + TcN; + } + { + E T6g, T6l, TaA, TaB; + T6g = T6e - T6f; + T6l = T6h + T6k; + T6m = KP707106781 * (T6g - T6l); + ThQ = KP707106781 * (T6g + T6l); + TaA = T6f + T6e; + TaB = T6h - T6k; + TaC = KP707106781 * (TaA + TaB); + Tim = KP707106781 * (TaB - TaA); + } + } + { + E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; + { + E TM, T6o, TR, T6p; + { + E TJ, TL, TI, TK; + TJ = ri[WS(rs, 4)]; + TL = ii[WS(rs, 4)]; + TI = W[6]; + TK = W[7]; + TM = FMA(TI, TJ, TK * TL); + T6o = FNMS(TK, TJ, TI * TL); + } + { + E TO, TQ, TN, TP; + TO = ri[WS(rs, 36)]; + TQ = ii[WS(rs, 36)]; + TN = W[70]; + TP = W[71]; + TR = FMA(TN, TO, TP * TQ); + T6p = FNMS(TP, TO, TN * TQ); + } + TS = TM + TR; + TcQ = T6o + T6p; + T6q = T6o - T6p; + T6t = TM - TR; + } + { + E TX, T6u, T12, T6v; + { + E TU, TW, TT, TV; + TU = ri[WS(rs, 20)]; + TW = ii[WS(rs, 20)]; + TT = W[38]; + TV = W[39]; + TX = FMA(TT, TU, TV * TW); + T6u = FNMS(TV, TU, TT * TW); + } + { + E TZ, T11, TY, T10; + TZ = ri[WS(rs, 52)]; + T11 = ii[WS(rs, 52)]; + TY = W[102]; + T10 = W[103]; + T12 = FMA(TY, TZ, T10 * T11); + T6v = FNMS(T10, TZ, TY * T11); + } + T13 = TX + T12; + TcR = T6u + T6v; + T6r = TX - T12; + T6w = T6u - T6v; + } + T14 = TS + T13; + Tfq = TcQ + TcR; + T6s = T6q + T6r; + T6x = T6t - T6w; + T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); + T9O = FMA(KP923879532, T6s, KP382683432 * T6x); + { + E TaE, TaF, TcS, TcT; + TaE = T6q - T6r; + TaF = T6t + T6w; + TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); + Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); + TcS = TcQ - TcR; + TcT = TS - T13; + TcU = TcS - TcT; + TeE = TcT + TcS; + } + } + { + E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; + { + E T19, T6z, T1e, T6A; + { + E T16, T18, T15, T17; + T16 = ri[WS(rs, 60)]; + T18 = ii[WS(rs, 60)]; + T15 = W[118]; + T17 = W[119]; + T19 = FMA(T15, T16, T17 * T18); + T6z = FNMS(T17, T16, T15 * T18); + } + { + E T1b, T1d, T1a, T1c; + T1b = ri[WS(rs, 28)]; + T1d = ii[WS(rs, 28)]; + T1a = W[54]; + T1c = W[55]; + T1e = FMA(T1a, T1b, T1c * T1d); + T6A = FNMS(T1c, T1b, T1a * T1d); + } + T1f = T19 + T1e; + TcW = T6z + T6A; + T6B = T6z - T6A; + T6E = T19 - T1e; + } + { + E T1k, T6F, T1p, T6G; + { + E T1h, T1j, T1g, T1i; + T1h = ri[WS(rs, 12)]; + T1j = ii[WS(rs, 12)]; + T1g = W[22]; + T1i = W[23]; + T1k = FMA(T1g, T1h, T1i * T1j); + T6F = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1m, T1o, T1l, T1n; + T1m = ri[WS(rs, 44)]; + T1o = ii[WS(rs, 44)]; + T1l = W[86]; + T1n = W[87]; + T1p = FMA(T1l, T1m, T1n * T1o); + T6G = FNMS(T1n, T1m, T1l * T1o); + } + T1q = T1k + T1p; + TcX = T6F + T6G; + T6C = T1k - T1p; + T6H = T6F - T6G; + } + T1r = T1f + T1q; + Tfr = TcW + TcX; + T6D = T6B + T6C; + T6I = T6E - T6H; + T6J = FMA(KP382683432, T6D, KP923879532 * T6I); + T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); + { + E TaH, TaI, TcV, TcY; + TaH = T6B - T6C; + TaI = T6E + T6H; + TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); + Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); + TcV = T1f - T1q; + TcY = TcW - TcX; + TcZ = TcV + TcY; + TeF = TcV - TcY; + } + } + { + E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; + E T6Z, T2c, Td9, T6R, T6U; + { + E T1v, T1x, T1u, T1w; + T1v = ri[WS(rs, 2)]; + T1x = ii[WS(rs, 2)]; + T1u = W[2]; + T1w = W[3]; + T1y = FMA(T1u, T1v, T1w * T1x); + T6M = FNMS(T1w, T1v, T1u * T1x); + } + { + E T1A, T1C, T1z, T1B; + T1A = ri[WS(rs, 34)]; + T1C = ii[WS(rs, 34)]; + T1z = W[66]; + T1B = W[67]; + T1D = FMA(T1z, T1A, T1B * T1C); + T6N = FNMS(T1B, T1A, T1z * T1C); + } + T1E = T1y + T1D; + Td2 = T6M + T6N; + { + E T1G, T1I, T1F, T1H; + T1G = ri[WS(rs, 18)]; + T1I = ii[WS(rs, 18)]; + T1F = W[34]; + T1H = W[35]; + T1J = FMA(T1F, T1G, T1H * T1I); + T74 = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1L, T1N, T1K, T1M; + T1L = ri[WS(rs, 50)]; + T1N = ii[WS(rs, 50)]; + T1K = W[98]; + T1M = W[99]; + T1O = FMA(T1K, T1L, T1M * T1N); + T75 = FNMS(T1M, T1L, T1K * T1N); + } + T1P = T1J + T1O; + Td3 = T74 + T75; + { + E T1V, T6X, T20, T6Y; + { + E T1S, T1U, T1R, T1T; + T1S = ri[WS(rs, 10)]; + T1U = ii[WS(rs, 10)]; + T1R = W[18]; + T1T = W[19]; + T1V = FMA(T1R, T1S, T1T * T1U); + T6X = FNMS(T1T, T1S, T1R * T1U); + } + { + E T1X, T1Z, T1W, T1Y; + T1X = ri[WS(rs, 42)]; + T1Z = ii[WS(rs, 42)]; + T1W = W[82]; + T1Y = W[83]; + T20 = FMA(T1W, T1X, T1Y * T1Z); + T6Y = FNMS(T1Y, T1X, T1W * T1Z); + } + T21 = T1V + T20; + Td8 = T6X + T6Y; + T6W = T1V - T20; + T6Z = T6X - T6Y; + } + { + E T26, T6S, T2b, T6T; + { + E T23, T25, T22, T24; + T23 = ri[WS(rs, 58)]; + T25 = ii[WS(rs, 58)]; + T22 = W[114]; + T24 = W[115]; + T26 = FMA(T22, T23, T24 * T25); + T6S = FNMS(T24, T23, T22 * T25); + } + { + E T28, T2a, T27, T29; + T28 = ri[WS(rs, 26)]; + T2a = ii[WS(rs, 26)]; + T27 = W[50]; + T29 = W[51]; + T2b = FMA(T27, T28, T29 * T2a); + T6T = FNMS(T29, T28, T27 * T2a); + } + T2c = T26 + T2b; + Td9 = T6S + T6T; + T6R = T26 - T2b; + T6U = T6S - T6T; + } + T1Q = T1E + T1P; + T2d = T21 + T2c; + Tfx = T1Q - T2d; + Tfu = Td2 + Td3; + Tfv = Td8 + Td9; + Tfw = Tfu - Tfv; + { + E T6O, T6P, Td7, Tda; + T6O = T6M - T6N; + T6P = T1J - T1O; + T6Q = T6O + T6P; + TaM = T6O - T6P; + Td7 = T1E - T1P; + Tda = Td8 - Td9; + Tdb = Td7 - Tda; + TeJ = Td7 + Tda; + } + { + E T6V, T70, T78, T79; + T6V = T6R - T6U; + T70 = T6W + T6Z; + T71 = KP707106781 * (T6V - T70); + TaQ = KP707106781 * (T70 + T6V); + T78 = T6Z - T6W; + T79 = T6R + T6U; + T7a = KP707106781 * (T78 - T79); + TaN = KP707106781 * (T78 + T79); + } + { + E Td4, Td5, T73, T76; + Td4 = Td2 - Td3; + Td5 = T2c - T21; + Td6 = Td4 - Td5; + TeI = Td4 + Td5; + T73 = T1y - T1D; + T76 = T74 - T75; + T77 = T73 - T76; + TaP = T73 + T76; + } + } + { + E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; + E T7q, T2X, Tdk, T7i, T7l; + { + E T2g, T2i, T2f, T2h; + T2g = ri[WS(rs, 62)]; + T2i = ii[WS(rs, 62)]; + T2f = W[122]; + T2h = W[123]; + T2j = FMA(T2f, T2g, T2h * T2i); + T7d = FNMS(T2h, T2g, T2f * T2i); + } + { + E T2l, T2n, T2k, T2m; + T2l = ri[WS(rs, 30)]; + T2n = ii[WS(rs, 30)]; + T2k = W[58]; + T2m = W[59]; + T2o = FMA(T2k, T2l, T2m * T2n); + T7e = FNMS(T2m, T2l, T2k * T2n); + } + T2p = T2j + T2o; + Tdd = T7d + T7e; + { + E T2r, T2t, T2q, T2s; + T2r = ri[WS(rs, 14)]; + T2t = ii[WS(rs, 14)]; + T2q = W[26]; + T2s = W[27]; + T2u = FMA(T2q, T2r, T2s * T2t); + T7v = FNMS(T2s, T2r, T2q * T2t); + } + { + E T2w, T2y, T2v, T2x; + T2w = ri[WS(rs, 46)]; + T2y = ii[WS(rs, 46)]; + T2v = W[90]; + T2x = W[91]; + T2z = FMA(T2v, T2w, T2x * T2y); + T7w = FNMS(T2x, T2w, T2v * T2y); + } + T2A = T2u + T2z; + Tde = T7v + T7w; + { + E T2G, T7o, T2L, T7p; + { + E T2D, T2F, T2C, T2E; + T2D = ri[WS(rs, 6)]; + T2F = ii[WS(rs, 6)]; + T2C = W[10]; + T2E = W[11]; + T2G = FMA(T2C, T2D, T2E * T2F); + T7o = FNMS(T2E, T2D, T2C * T2F); + } + { + E T2I, T2K, T2H, T2J; + T2I = ri[WS(rs, 38)]; + T2K = ii[WS(rs, 38)]; + T2H = W[74]; + T2J = W[75]; + T2L = FMA(T2H, T2I, T2J * T2K); + T7p = FNMS(T2J, T2I, T2H * T2K); + } + T2M = T2G + T2L; + Tdj = T7o + T7p; + T7n = T2G - T2L; + T7q = T7o - T7p; + } + { + E T2R, T7j, T2W, T7k; + { + E T2O, T2Q, T2N, T2P; + T2O = ri[WS(rs, 54)]; + T2Q = ii[WS(rs, 54)]; + T2N = W[106]; + T2P = W[107]; + T2R = FMA(T2N, T2O, T2P * T2Q); + T7j = FNMS(T2P, T2O, T2N * T2Q); + } + { + E T2T, T2V, T2S, T2U; + T2T = ri[WS(rs, 22)]; + T2V = ii[WS(rs, 22)]; + T2S = W[42]; + T2U = W[43]; + T2W = FMA(T2S, T2T, T2U * T2V); + T7k = FNMS(T2U, T2T, T2S * T2V); + } + T2X = T2R + T2W; + Tdk = T7j + T7k; + T7i = T2R - T2W; + T7l = T7j - T7k; + } + T2B = T2p + T2A; + T2Y = T2M + T2X; + Tfz = T2B - T2Y; + TfA = Tdd + Tde; + TfB = Tdj + Tdk; + TfC = TfA - TfB; + { + E T7f, T7g, Tdi, Tdl; + T7f = T7d - T7e; + T7g = T2u - T2z; + T7h = T7f + T7g; + TaW = T7f - T7g; + Tdi = T2p - T2A; + Tdl = Tdj - Tdk; + Tdm = Tdi - Tdl; + TeM = Tdi + Tdl; + } + { + E T7m, T7r, T7z, T7A; + T7m = T7i - T7l; + T7r = T7n + T7q; + T7s = KP707106781 * (T7m - T7r); + TaU = KP707106781 * (T7r + T7m); + T7z = T7q - T7n; + T7A = T7i + T7l; + T7B = KP707106781 * (T7z - T7A); + TaX = KP707106781 * (T7z + T7A); + } + { + E Tdf, Tdg, T7u, T7x; + Tdf = Tdd - Tde; + Tdg = T2X - T2M; + Tdh = Tdf - Tdg; + TeL = Tdf + Tdg; + T7u = T2j - T2o; + T7x = T7v - T7w; + T7y = T7u - T7x; + TaT = T7u + T7x; + } + } + { + E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; + E T8H, T5h, TdT, T8J, T8M; + { + E T4A, T4C, T4z, T4B; + T4A = ri[WS(rs, 63)]; + T4C = ii[WS(rs, 63)]; + T4z = W[124]; + T4B = W[125]; + T4D = FMA(T4z, T4A, T4B * T4C); + T9e = FNMS(T4B, T4A, T4z * T4C); + } + { + E T4F, T4H, T4E, T4G; + T4F = ri[WS(rs, 31)]; + T4H = ii[WS(rs, 31)]; + T4E = W[60]; + T4G = W[61]; + T4I = FMA(T4E, T4F, T4G * T4H); + T9f = FNMS(T4G, T4F, T4E * T4H); + } + T4J = T4D + T4I; + Te8 = T9e + T9f; + { + E T4L, T4N, T4K, T4M; + T4L = ri[WS(rs, 15)]; + T4N = ii[WS(rs, 15)]; + T4K = W[28]; + T4M = W[29]; + T4O = FMA(T4K, T4L, T4M * T4N); + T8A = FNMS(T4M, T4L, T4K * T4N); + } + { + E T4Q, T4S, T4P, T4R; + T4Q = ri[WS(rs, 47)]; + T4S = ii[WS(rs, 47)]; + T4P = W[92]; + T4R = W[93]; + T4T = FMA(T4P, T4Q, T4R * T4S); + T8B = FNMS(T4R, T4Q, T4P * T4S); + } + T4U = T4O + T4T; + Te9 = T8A + T8B; + { + E T50, T8E, T55, T8F; + { + E T4X, T4Z, T4W, T4Y; + T4X = ri[WS(rs, 7)]; + T4Z = ii[WS(rs, 7)]; + T4W = W[12]; + T4Y = W[13]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T8E = FNMS(T4Y, T4X, T4W * T4Z); + } + { + E T52, T54, T51, T53; + T52 = ri[WS(rs, 39)]; + T54 = ii[WS(rs, 39)]; + T51 = W[76]; + T53 = W[77]; + T55 = FMA(T51, T52, T53 * T54); + T8F = FNMS(T53, T52, T51 * T54); + } + T56 = T50 + T55; + TdS = T8E + T8F; + T8G = T8E - T8F; + T8H = T50 - T55; + } + { + E T5b, T8K, T5g, T8L; + { + E T58, T5a, T57, T59; + T58 = ri[WS(rs, 55)]; + T5a = ii[WS(rs, 55)]; + T57 = W[108]; + T59 = W[109]; + T5b = FMA(T57, T58, T59 * T5a); + T8K = FNMS(T59, T58, T57 * T5a); + } + { + E T5d, T5f, T5c, T5e; + T5d = ri[WS(rs, 23)]; + T5f = ii[WS(rs, 23)]; + T5c = W[44]; + T5e = W[45]; + T5g = FMA(T5c, T5d, T5e * T5f); + T8L = FNMS(T5e, T5d, T5c * T5f); + } + T5h = T5b + T5g; + TdT = T8K + T8L; + T8J = T5b - T5g; + T8M = T8K - T8L; + } + { + E T4V, T5i, Tea, Teb; + T4V = T4J + T4U; + T5i = T56 + T5h; + T5j = T4V + T5i; + TfR = T4V - T5i; + Tea = Te8 - Te9; + Teb = T5h - T56; + Tec = Tea - Teb; + Tf0 = Tea + Teb; + } + { + E TfW, TfX, T8z, T8C; + TfW = Te8 + Te9; + TfX = TdS + TdT; + TfY = TfW - TfX; + Tgy = TfW + TfX; + T8z = T4D - T4I; + T8C = T8A - T8B; + T8D = T8z - T8C; + Tbl = T8z + T8C; + } + { + E T8I, T8N, T9j, T9k; + T8I = T8G - T8H; + T8N = T8J + T8M; + T8O = KP707106781 * (T8I - T8N); + Tbx = KP707106781 * (T8I + T8N); + T9j = T8J - T8M; + T9k = T8H + T8G; + T9l = KP707106781 * (T9j - T9k); + Tbm = KP707106781 * (T9k + T9j); + } + { + E TdR, TdU, T9g, T9h; + TdR = T4J - T4U; + TdU = TdS - TdT; + TdV = TdR - TdU; + TeX = TdR + TdU; + T9g = T9e - T9f; + T9h = T4O - T4T; + T9i = T9g + T9h; + Tbw = T9g - T9h; + } + } + { + E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; + E T7T, T3K, TdJ, T7L, T7O; + { + E T33, T35, T32, T34; + T33 = ri[WS(rs, 1)]; + T35 = ii[WS(rs, 1)]; + T32 = W[0]; + T34 = W[1]; + T36 = FMA(T32, T33, T34 * T35); + T7G = FNMS(T34, T33, T32 * T35); + } + { + E T38, T3a, T37, T39; + T38 = ri[WS(rs, 33)]; + T3a = ii[WS(rs, 33)]; + T37 = W[64]; + T39 = W[65]; + T3b = FMA(T37, T38, T39 * T3a); + T7H = FNMS(T39, T38, T37 * T3a); + } + T3c = T36 + T3b; + Tdq = T7G + T7H; + { + E T3e, T3g, T3d, T3f; + T3e = ri[WS(rs, 17)]; + T3g = ii[WS(rs, 17)]; + T3d = W[32]; + T3f = W[33]; + T3h = FMA(T3d, T3e, T3f * T3g); + T8m = FNMS(T3f, T3e, T3d * T3g); + } + { + E T3j, T3l, T3i, T3k; + T3j = ri[WS(rs, 49)]; + T3l = ii[WS(rs, 49)]; + T3i = W[96]; + T3k = W[97]; + T3m = FMA(T3i, T3j, T3k * T3l); + T8n = FNMS(T3k, T3j, T3i * T3l); + } + T3n = T3h + T3m; + Tdr = T8m + T8n; + { + E T3t, T7R, T3y, T7S; + { + E T3q, T3s, T3p, T3r; + T3q = ri[WS(rs, 9)]; + T3s = ii[WS(rs, 9)]; + T3p = W[16]; + T3r = W[17]; + T3t = FMA(T3p, T3q, T3r * T3s); + T7R = FNMS(T3r, T3q, T3p * T3s); + } + { + E T3v, T3x, T3u, T3w; + T3v = ri[WS(rs, 41)]; + T3x = ii[WS(rs, 41)]; + T3u = W[80]; + T3w = W[81]; + T3y = FMA(T3u, T3v, T3w * T3x); + T7S = FNMS(T3w, T3v, T3u * T3x); + } + T3z = T3t + T3y; + TdI = T7R + T7S; + T7Q = T3t - T3y; + T7T = T7R - T7S; + } + { + E T3E, T7M, T3J, T7N; + { + E T3B, T3D, T3A, T3C; + T3B = ri[WS(rs, 57)]; + T3D = ii[WS(rs, 57)]; + T3A = W[112]; + T3C = W[113]; + T3E = FMA(T3A, T3B, T3C * T3D); + T7M = FNMS(T3C, T3B, T3A * T3D); + } + { + E T3G, T3I, T3F, T3H; + T3G = ri[WS(rs, 25)]; + T3I = ii[WS(rs, 25)]; + T3F = W[48]; + T3H = W[49]; + T3J = FMA(T3F, T3G, T3H * T3I); + T7N = FNMS(T3H, T3G, T3F * T3I); + } + T3K = T3E + T3J; + TdJ = T7M + T7N; + T7L = T3E - T3J; + T7O = T7M - T7N; + } + { + E T3o, T3L, TdH, TdK; + T3o = T3c + T3n; + T3L = T3z + T3K; + T3M = T3o + T3L; + TfL = T3o - T3L; + TdH = T3c - T3n; + TdK = TdI - TdJ; + TdL = TdH - TdK; + TeQ = TdH + TdK; + } + { + E TfG, TfH, T7I, T7J; + TfG = Tdq + Tdr; + TfH = TdI + TdJ; + TfI = TfG - TfH; + Tgt = TfG + TfH; + T7I = T7G - T7H; + T7J = T3h - T3m; + T7K = T7I + T7J; + Tb2 = T7I - T7J; + } + { + E T7P, T7U, T8q, T8r; + T7P = T7L - T7O; + T7U = T7Q + T7T; + T7V = KP707106781 * (T7P - T7U); + Tbe = KP707106781 * (T7U + T7P); + T8q = T7T - T7Q; + T8r = T7L + T7O; + T8s = KP707106781 * (T8q - T8r); + Tb3 = KP707106781 * (T8q + T8r); + } + { + E Tds, Tdt, T8l, T8o; + Tds = Tdq - Tdr; + Tdt = T3K - T3z; + Tdu = Tds - Tdt; + TeT = Tds + Tdt; + T8l = T36 - T3b; + T8o = T8m - T8n; + T8p = T8l - T8o; + Tbd = T8l + T8o; + } + } + { + E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; + E T84; + { + E T3R, T88, T3W, T89; + { + E T3O, T3Q, T3N, T3P; + T3O = ri[WS(rs, 5)]; + T3Q = ii[WS(rs, 5)]; + T3N = W[8]; + T3P = W[9]; + T3R = FMA(T3N, T3O, T3P * T3Q); + T88 = FNMS(T3P, T3O, T3N * T3Q); + } + { + E T3T, T3V, T3S, T3U; + T3T = ri[WS(rs, 37)]; + T3V = ii[WS(rs, 37)]; + T3S = W[72]; + T3U = W[73]; + T3W = FMA(T3S, T3T, T3U * T3V); + T89 = FNMS(T3U, T3T, T3S * T3V); + } + T3X = T3R + T3W; + TdB = T88 + T89; + T8a = T88 - T89; + T8d = T3R - T3W; + } + { + E T4p, T7Y, T4u, T7Z; + { + E T4m, T4o, T4l, T4n; + T4m = ri[WS(rs, 13)]; + T4o = ii[WS(rs, 13)]; + T4l = W[24]; + T4n = W[25]; + T4p = FMA(T4l, T4m, T4n * T4o); + T7Y = FNMS(T4n, T4m, T4l * T4o); + } + { + E T4r, T4t, T4q, T4s; + T4r = ri[WS(rs, 45)]; + T4t = ii[WS(rs, 45)]; + T4q = W[88]; + T4s = W[89]; + T4u = FMA(T4q, T4r, T4s * T4t); + T7Z = FNMS(T4s, T4r, T4q * T4t); + } + T4v = T4p + T4u; + Tdx = T7Y + T7Z; + T80 = T7Y - T7Z; + T85 = T4p - T4u; + } + { + E T42, T8e, T47, T8f; + { + E T3Z, T41, T3Y, T40; + T3Z = ri[WS(rs, 21)]; + T41 = ii[WS(rs, 21)]; + T3Y = W[40]; + T40 = W[41]; + T42 = FMA(T3Y, T3Z, T40 * T41); + T8e = FNMS(T40, T3Z, T3Y * T41); + } + { + E T44, T46, T43, T45; + T44 = ri[WS(rs, 53)]; + T46 = ii[WS(rs, 53)]; + T43 = W[104]; + T45 = W[105]; + T47 = FMA(T43, T44, T45 * T46); + T8f = FNMS(T45, T44, T43 * T46); + } + T48 = T42 + T47; + TdC = T8e + T8f; + T8b = T42 - T47; + T8g = T8e - T8f; + } + { + E T4e, T82, T4j, T83; + { + E T4b, T4d, T4a, T4c; + T4b = ri[WS(rs, 61)]; + T4d = ii[WS(rs, 61)]; + T4a = W[120]; + T4c = W[121]; + T4e = FMA(T4a, T4b, T4c * T4d); + T82 = FNMS(T4c, T4b, T4a * T4d); + } + { + E T4g, T4i, T4f, T4h; + T4g = ri[WS(rs, 29)]; + T4i = ii[WS(rs, 29)]; + T4f = W[56]; + T4h = W[57]; + T4j = FMA(T4f, T4g, T4h * T4i); + T83 = FNMS(T4h, T4g, T4f * T4i); + } + T4k = T4e + T4j; + Tdw = T82 + T83; + T7X = T4e - T4j; + T84 = T82 - T83; + } + { + E T49, T4w, TdA, TdD; + T49 = T3X + T48; + T4w = T4k + T4v; + T4x = T49 + T4w; + TfJ = T4w - T49; + TdA = T3X - T48; + TdD = TdB - TdC; + TdE = TdA + TdD; + TdM = TdD - TdA; + } + { + E TfM, TfN, T81, T86; + TfM = TdB + TdC; + TfN = Tdw + Tdx; + TfO = TfM - TfN; + Tgu = TfM + TfN; + T81 = T7X - T80; + T86 = T84 + T85; + T87 = FNMS(KP923879532, T86, KP382683432 * T81); + T8v = FMA(KP382683432, T86, KP923879532 * T81); + } + { + E T8c, T8h, Tb8, Tb9; + T8c = T8a + T8b; + T8h = T8d - T8g; + T8i = FMA(KP923879532, T8c, KP382683432 * T8h); + T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); + Tb8 = T8a - T8b; + Tb9 = T8d + T8g; + Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); + Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); + } + { + E Tdv, Tdy, Tb5, Tb6; + Tdv = T4k - T4v; + Tdy = Tdw - Tdx; + Tdz = Tdv - Tdy; + TdN = Tdv + Tdy; + Tb5 = T7X + T80; + Tb6 = T84 - T85; + Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); + Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); + } + } + { + E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; + E T96; + { + E T5o, T8Q, T5t, T8R; + { + E T5l, T5n, T5k, T5m; + T5l = ri[WS(rs, 3)]; + T5n = ii[WS(rs, 3)]; + T5k = W[4]; + T5m = W[5]; + T5o = FMA(T5k, T5l, T5m * T5n); + T8Q = FNMS(T5m, T5l, T5k * T5n); + } + { + E T5q, T5s, T5p, T5r; + T5q = ri[WS(rs, 35)]; + T5s = ii[WS(rs, 35)]; + T5p = W[68]; + T5r = W[69]; + T5t = FMA(T5p, T5q, T5r * T5s); + T8R = FNMS(T5r, T5q, T5p * T5s); + } + T5u = T5o + T5t; + TdW = T8Q + T8R; + T8S = T8Q - T8R; + T8V = T5o - T5t; + } + { + E T5W, T97, T61, T98; + { + E T5T, T5V, T5S, T5U; + T5T = ri[WS(rs, 11)]; + T5V = ii[WS(rs, 11)]; + T5S = W[20]; + T5U = W[21]; + T5W = FMA(T5S, T5T, T5U * T5V); + T97 = FNMS(T5U, T5T, T5S * T5V); + } + { + E T5Y, T60, T5X, T5Z; + T5Y = ri[WS(rs, 43)]; + T60 = ii[WS(rs, 43)]; + T5X = W[84]; + T5Z = W[85]; + T61 = FMA(T5X, T5Y, T5Z * T60); + T98 = FNMS(T5Z, T5Y, T5X * T60); + } + T62 = T5W + T61; + Te3 = T97 + T98; + T94 = T5W - T61; + T99 = T97 - T98; + } + { + E T5z, T8W, T5E, T8X; + { + E T5w, T5y, T5v, T5x; + T5w = ri[WS(rs, 19)]; + T5y = ii[WS(rs, 19)]; + T5v = W[36]; + T5x = W[37]; + T5z = FMA(T5v, T5w, T5x * T5y); + T8W = FNMS(T5x, T5w, T5v * T5y); + } + { + E T5B, T5D, T5A, T5C; + T5B = ri[WS(rs, 51)]; + T5D = ii[WS(rs, 51)]; + T5A = W[100]; + T5C = W[101]; + T5E = FMA(T5A, T5B, T5C * T5D); + T8X = FNMS(T5C, T5B, T5A * T5D); + } + T5F = T5z + T5E; + TdX = T8W + T8X; + T8T = T5z - T5E; + T8Y = T8W - T8X; + } + { + E T5L, T91, T5Q, T92; + { + E T5I, T5K, T5H, T5J; + T5I = ri[WS(rs, 59)]; + T5K = ii[WS(rs, 59)]; + T5H = W[116]; + T5J = W[117]; + T5L = FMA(T5H, T5I, T5J * T5K); + T91 = FNMS(T5J, T5I, T5H * T5K); + } + { + E T5N, T5P, T5M, T5O; + T5N = ri[WS(rs, 27)]; + T5P = ii[WS(rs, 27)]; + T5M = W[52]; + T5O = W[53]; + T5Q = FMA(T5M, T5N, T5O * T5P); + T92 = FNMS(T5O, T5N, T5M * T5P); + } + T5R = T5L + T5Q; + Te2 = T91 + T92; + T93 = T91 - T92; + T96 = T5L - T5Q; + } + { + E T5G, T63, Te1, Te4; + T5G = T5u + T5F; + T63 = T5R + T62; + T64 = T5G + T63; + TfZ = T63 - T5G; + Te1 = T5R - T62; + Te4 = Te2 - Te3; + Te5 = Te1 + Te4; + Ted = Te1 - Te4; + } + { + E TfS, TfT, T8U, T8Z; + TfS = TdW + TdX; + TfT = Te2 + Te3; + TfU = TfS - TfT; + Tgz = TfS + TfT; + T8U = T8S + T8T; + T8Z = T8V - T8Y; + T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); + T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); + } + { + E T95, T9a, Tbr, Tbs; + T95 = T93 + T94; + T9a = T96 - T99; + T9b = FMA(KP382683432, T95, KP923879532 * T9a); + T9n = FNMS(KP923879532, T95, KP382683432 * T9a); + Tbr = T93 - T94; + Tbs = T96 + T99; + Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); + Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); + } + { + E TdY, TdZ, Tbo, Tbp; + TdY = TdW - TdX; + TdZ = T5u - T5F; + Te0 = TdY - TdZ; + Tee = TdZ + TdY; + Tbo = T8S - T8T; + Tbp = T8V + T8Y; + Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); + TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); + } + } + { + E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; + E TgM; + { + E TH, T1s, TgI, TgJ; + TH = Tj + TG; + T1s = T14 + T1r; + T1t = TH + T1s; + Tgn = TH - T1s; + TgI = Tgt + Tgu; + TgJ = Tgy + Tgz; + TgK = TgI - TgJ; + TgL = TgI + TgJ; + } + { + E TgN, TgU, T2e, T2Z; + TgN = Tfq + Tfr; + TgU = TgO + TgT; + TgV = TgN + TgU; + Th1 = TgU - TgN; + T2e = T1Q + T2d; + T2Z = T2B + T2Y; + T30 = T2e + T2Z; + Th0 = T2Z - T2e; + } + { + E T4y, T65, Tgs, Tgv; + T4y = T3M + T4x; + T65 = T5j + T64; + T66 = T4y + T65; + TgX = T65 - T4y; + Tgs = T3M - T4x; + Tgv = Tgt - Tgu; + Tgw = Tgs + Tgv; + TgE = Tgv - Tgs; + } + { + E Tgx, TgA, Tgo, Tgp; + Tgx = T5j - T64; + TgA = Tgy - Tgz; + TgB = Tgx - TgA; + TgF = Tgx + TgA; + Tgo = Tfu + Tfv; + Tgp = TfA + TfB; + Tgq = Tgo - Tgp; + TgM = Tgo + Tgp; + } + { + E T31, TgW, TgH, TgY; + T31 = T1t + T30; + ri[WS(rs, 32)] = T31 - T66; + ri[0] = T31 + T66; + TgW = TgM + TgV; + ii[0] = TgL + TgW; + ii[WS(rs, 32)] = TgW - TgL; + TgH = T1t - T30; + ri[WS(rs, 48)] = TgH - TgK; + ri[WS(rs, 16)] = TgH + TgK; + TgY = TgV - TgM; + ii[WS(rs, 16)] = TgX + TgY; + ii[WS(rs, 48)] = TgY - TgX; + } + { + E Tgr, TgC, TgZ, Th2; + Tgr = Tgn + Tgq; + TgC = KP707106781 * (Tgw + TgB); + ri[WS(rs, 40)] = Tgr - TgC; + ri[WS(rs, 8)] = Tgr + TgC; + TgZ = KP707106781 * (TgE + TgF); + Th2 = Th0 + Th1; + ii[WS(rs, 8)] = TgZ + Th2; + ii[WS(rs, 40)] = Th2 - TgZ; + } + { + E TgD, TgG, Th3, Th4; + TgD = Tgn - Tgq; + TgG = KP707106781 * (TgE - TgF); + ri[WS(rs, 56)] = TgD - TgG; + ri[WS(rs, 24)] = TgD + TgG; + Th3 = KP707106781 * (TgB - Tgw); + Th4 = Th1 - Th0; + ii[WS(rs, 24)] = Th3 + Th4; + ii[WS(rs, 56)] = Th4 - Th3; + } + } + { + E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; + E Tg5; + { + E Tfp, Tfs, Tgf, Tgg; + Tfp = Tj - TG; + Tfs = Tfq - Tfr; + Tft = Tfp - Tfs; + Tg7 = Tfp + Tfs; + Tgf = TfR + TfU; + Tgg = TfY + TfZ; + Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); + Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); + } + { + E Th7, Th8, Tfy, TfD; + Th7 = T1r - T14; + Th8 = TgT - TgO; + Th9 = Th7 + Th8; + Thf = Th8 - Th7; + Tfy = Tfw - Tfx; + TfD = Tfz + TfC; + TfE = KP707106781 * (Tfy - TfD); + Th6 = KP707106781 * (Tfy + TfD); + } + { + E TfK, TfP, Tg8, Tg9; + TfK = TfI - TfJ; + TfP = TfL - TfO; + TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); + Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); + Tg8 = Tfx + Tfw; + Tg9 = Tfz - TfC; + Tga = KP707106781 * (Tg8 + Tg9); + The = KP707106781 * (Tg9 - Tg8); + } + { + E Tgc, Tgd, TfV, Tg0; + Tgc = TfI + TfJ; + Tgd = TfL + TfO; + Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); + Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); + TfV = TfR - TfU; + Tg0 = TfY - TfZ; + Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); + Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); + } + { + E TfF, Tg2, Thd, Thg; + TfF = Tft + TfE; + Tg2 = TfQ + Tg1; + ri[WS(rs, 44)] = TfF - Tg2; + ri[WS(rs, 12)] = TfF + Tg2; + Thd = Tg4 + Tg5; + Thg = The + Thf; + ii[WS(rs, 12)] = Thd + Thg; + ii[WS(rs, 44)] = Thg - Thd; + } + { + E Tg3, Tg6, Thh, Thi; + Tg3 = Tft - TfE; + Tg6 = Tg4 - Tg5; + ri[WS(rs, 60)] = Tg3 - Tg6; + ri[WS(rs, 28)] = Tg3 + Tg6; + Thh = Tg1 - TfQ; + Thi = Thf - The; + ii[WS(rs, 28)] = Thh + Thi; + ii[WS(rs, 60)] = Thi - Thh; + } + { + E Tgb, Tgi, Th5, Tha; + Tgb = Tg7 + Tga; + Tgi = Tge + Tgh; + ri[WS(rs, 36)] = Tgb - Tgi; + ri[WS(rs, 4)] = Tgb + Tgi; + Th5 = Tgk + Tgl; + Tha = Th6 + Th9; + ii[WS(rs, 4)] = Th5 + Tha; + ii[WS(rs, 36)] = Tha - Th5; + } + { + E Tgj, Tgm, Thb, Thc; + Tgj = Tg7 - Tga; + Tgm = Tgk - Tgl; + ri[WS(rs, 52)] = Tgj - Tgm; + ri[WS(rs, 20)] = Tgj + Tgm; + Thb = Tgh - Tge; + Thc = Th9 - Th6; + ii[WS(rs, 20)] = Thb + Thc; + ii[WS(rs, 52)] = Thc - Thb; + } + } + { + E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; + E Teu; + { + E TcP, Td0, Teo, Tep; + TcP = TcL - TcO; + Td0 = KP707106781 * (TcU - TcZ); + Td1 = TcP - Td0; + Ten = TcP + Td0; + { + E Tdc, Tdn, ThB, ThC; + Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); + Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); + Tdo = Tdc - Tdn; + ThA = Tdc + Tdn; + ThB = KP707106781 * (TeF - TeE); + ThC = Thn - Thm; + ThD = ThB + ThC; + ThJ = ThC - ThB; + } + Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); + Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); + Teq = Teo + Tep; + ThI = Tep - Teo; + { + E Te7, Tev, Teg, Tew, Te6, Tef; + Te6 = KP707106781 * (Te0 - Te5); + Te7 = TdV - Te6; + Tev = TdV + Te6; + Tef = KP707106781 * (Ted - Tee); + Teg = Tec - Tef; + Tew = Tec + Tef; + Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); + TeB = FMA(KP831469612, Tew, KP555570233 * Tev); + Tel = FMA(KP195090322, Teg, KP980785280 * Te7); + Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); + } + { + E TdG, Tes, TdP, Tet, TdF, TdO; + TdF = KP707106781 * (Tdz - TdE); + TdG = Tdu - TdF; + Tes = Tdu + TdF; + TdO = KP707106781 * (TdM - TdN); + TdP = TdL - TdO; + Tet = TdL + TdO; + TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); + TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); + Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); + Teu = FMA(KP555570233, Tes, KP831469612 * Tet); + } + } + { + E Tdp, Tei, ThH, ThK; + Tdp = Td1 + Tdo; + Tei = TdQ + Teh; + ri[WS(rs, 46)] = Tdp - Tei; + ri[WS(rs, 14)] = Tdp + Tei; + ThH = Tek + Tel; + ThK = ThI + ThJ; + ii[WS(rs, 14)] = ThH + ThK; + ii[WS(rs, 46)] = ThK - ThH; + } + { + E Tej, Tem, ThL, ThM; + Tej = Td1 - Tdo; + Tem = Tek - Tel; + ri[WS(rs, 62)] = Tej - Tem; + ri[WS(rs, 30)] = Tej + Tem; + ThL = Teh - TdQ; + ThM = ThJ - ThI; + ii[WS(rs, 30)] = ThL + ThM; + ii[WS(rs, 62)] = ThM - ThL; + } + { + E Ter, Tey, Thz, ThE; + Ter = Ten + Teq; + Tey = Teu + Tex; + ri[WS(rs, 38)] = Ter - Tey; + ri[WS(rs, 6)] = Ter + Tey; + Thz = TeA + TeB; + ThE = ThA + ThD; + ii[WS(rs, 6)] = Thz + ThE; + ii[WS(rs, 38)] = ThE - Thz; + } + { + E Tez, TeC, ThF, ThG; + Tez = Ten - Teq; + TeC = TeA - TeB; + ri[WS(rs, 54)] = Tez - TeC; + ri[WS(rs, 22)] = Tez + TeC; + ThF = Tex - Teu; + ThG = ThD - ThA; + ii[WS(rs, 22)] = ThF + ThG; + ii[WS(rs, 54)] = ThG - ThF; + } + } + { + E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; + E Tfg; + { + E TeD, TeG, Tfa, Tfb; + TeD = TcL + TcO; + TeG = KP707106781 * (TeE + TeF); + TeH = TeD - TeG; + Tf9 = TeD + TeG; + { + E TeK, TeN, Thl, Tho; + TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); + TeN = FMA(KP923879532, TeL, KP382683432 * TeM); + TeO = TeK - TeN; + Thk = TeK + TeN; + Thl = KP707106781 * (TcU + TcZ); + Tho = Thm + Thn; + Thp = Thl + Tho; + Thv = Tho - Thl; + } + Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); + Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); + Tfc = Tfa + Tfb; + Thu = Tfb - Tfa; + { + E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; + TeY = KP707106781 * (Tee + Ted); + TeZ = TeX - TeY; + Tfh = TeX + TeY; + Tf1 = KP707106781 * (Te0 + Te5); + Tf2 = Tf0 - Tf1; + Tfi = Tf0 + Tf1; + Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); + Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); + Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); + Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); + } + { + E TeS, Tfe, TeV, Tff, TeR, TeU; + TeR = KP707106781 * (TdE + Tdz); + TeS = TeQ - TeR; + Tfe = TeQ + TeR; + TeU = KP707106781 * (TdM + TdN); + TeV = TeT - TeU; + Tff = TeT + TeU; + TeW = FMA(KP555570233, TeS, KP831469612 * TeV); + Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); + Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); + Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); + } + } + { + E TeP, Tf4, Tht, Thw; + TeP = TeH + TeO; + Tf4 = TeW + Tf3; + ri[WS(rs, 42)] = TeP - Tf4; + ri[WS(rs, 10)] = TeP + Tf4; + Tht = Tf6 + Tf7; + Thw = Thu + Thv; + ii[WS(rs, 10)] = Tht + Thw; + ii[WS(rs, 42)] = Thw - Tht; + } + { + E Tf5, Tf8, Thx, Thy; + Tf5 = TeH - TeO; + Tf8 = Tf6 - Tf7; + ri[WS(rs, 58)] = Tf5 - Tf8; + ri[WS(rs, 26)] = Tf5 + Tf8; + Thx = Tf3 - TeW; + Thy = Thv - Thu; + ii[WS(rs, 26)] = Thx + Thy; + ii[WS(rs, 58)] = Thy - Thx; + } + { + E Tfd, Tfk, Thj, Thq; + Tfd = Tf9 + Tfc; + Tfk = Tfg + Tfj; + ri[WS(rs, 34)] = Tfd - Tfk; + ri[WS(rs, 2)] = Tfd + Tfk; + Thj = Tfm + Tfn; + Thq = Thk + Thp; + ii[WS(rs, 2)] = Thj + Thq; + ii[WS(rs, 34)] = Thq - Thj; + } + { + E Tfl, Tfo, Thr, Ths; + Tfl = Tf9 - Tfc; + Tfo = Tfm - Tfn; + ri[WS(rs, 50)] = Tfl - Tfo; + ri[WS(rs, 18)] = Tfl + Tfo; + Thr = Tfj - Tfg; + Ths = Thp - Thk; + ii[WS(rs, 18)] = Thr + Ths; + ii[WS(rs, 50)] = Ths - Thr; + } + } + { + E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; + E T9H; + { + E T6n, T6K, TiB, TiC; + T6n = T6b - T6m; + T6K = T6y - T6J; + T6L = T6n - T6K; + T9x = T6n + T6K; + TiB = T9P - T9O; + TiC = Tin - Tim; + TiD = TiB + TiC; + TiJ = TiC - TiB; + } + { + E T7c, T9y, T7D, T9z; + { + E T72, T7b, T7t, T7C; + T72 = T6Q - T71; + T7b = T77 - T7a; + T7c = FNMS(KP980785280, T7b, KP195090322 * T72); + T9y = FMA(KP980785280, T72, KP195090322 * T7b); + T7t = T7h - T7s; + T7C = T7y - T7B; + T7D = FMA(KP195090322, T7t, KP980785280 * T7C); + T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); + } + T7E = T7c - T7D; + TiI = T9z - T9y; + T9A = T9y + T9z; + TiA = T7c + T7D; + } + { + E T8k, T9C, T8x, T9D; + { + E T7W, T8j, T8t, T8w; + T7W = T7K - T7V; + T8j = T87 - T8i; + T8k = T7W - T8j; + T9C = T7W + T8j; + T8t = T8p - T8s; + T8w = T8u - T8v; + T8x = T8t - T8w; + T9D = T8t + T8w; + } + T8y = FMA(KP995184726, T8k, KP098017140 * T8x); + T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); + T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); + T9E = FMA(KP634393284, T9C, KP773010453 * T9D); + } + { + E T9d, T9F, T9q, T9G; + { + E T8P, T9c, T9m, T9p; + T8P = T8D - T8O; + T9c = T90 - T9b; + T9d = T8P - T9c; + T9F = T8P + T9c; + T9m = T9i - T9l; + T9p = T9n - T9o; + T9q = T9m - T9p; + T9G = T9m + T9p; + } + T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); + T9L = FMA(KP773010453, T9G, KP634393284 * T9F); + T9v = FMA(KP098017140, T9q, KP995184726 * T9d); + T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); + } + { + E T7F, T9s, TiH, TiK; + T7F = T6L + T7E; + T9s = T8y + T9r; + ri[WS(rs, 47)] = T7F - T9s; + ri[WS(rs, 15)] = T7F + T9s; + TiH = T9u + T9v; + TiK = TiI + TiJ; + ii[WS(rs, 15)] = TiH + TiK; + ii[WS(rs, 47)] = TiK - TiH; + } + { + E T9t, T9w, TiL, TiM; + T9t = T6L - T7E; + T9w = T9u - T9v; + ri[WS(rs, 63)] = T9t - T9w; + ri[WS(rs, 31)] = T9t + T9w; + TiL = T9r - T8y; + TiM = TiJ - TiI; + ii[WS(rs, 31)] = TiL + TiM; + ii[WS(rs, 63)] = TiM - TiL; + } + { + E T9B, T9I, Tiz, TiE; + T9B = T9x + T9A; + T9I = T9E + T9H; + ri[WS(rs, 39)] = T9B - T9I; + ri[WS(rs, 7)] = T9B + T9I; + Tiz = T9K + T9L; + TiE = TiA + TiD; + ii[WS(rs, 7)] = Tiz + TiE; + ii[WS(rs, 39)] = TiE - Tiz; + } + { + E T9J, T9M, TiF, TiG; + T9J = T9x - T9A; + T9M = T9K - T9L; + ri[WS(rs, 55)] = T9J - T9M; + ri[WS(rs, 23)] = T9J + T9M; + TiF = T9H - T9E; + TiG = TiD - TiA; + ii[WS(rs, 23)] = TiF + TiG; + ii[WS(rs, 55)] = TiG - TiF; + } + } + { + E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; + E TbT; + { + E TaD, TaK, Ti7, Ti8; + TaD = Taz - TaC; + TaK = TaG - TaJ; + TaL = TaD - TaK; + TbJ = TaD + TaK; + Ti7 = Tc1 - Tc0; + Ti8 = ThT - ThQ; + Ti9 = Ti7 + Ti8; + Tif = Ti8 - Ti7; + } + { + E TaS, TbK, TaZ, TbL; + { + E TaO, TaR, TaV, TaY; + TaO = TaM - TaN; + TaR = TaP - TaQ; + TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); + TbK = FMA(KP555570233, TaR, KP831469612 * TaO); + TaV = TaT - TaU; + TaY = TaW - TaX; + TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); + TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); + } + Tb0 = TaS - TaZ; + Tie = TbL - TbK; + TbM = TbK + TbL; + Ti6 = TaS + TaZ; + } + { + E Tbc, TbO, Tbj, TbP; + { + E Tb4, Tbb, Tbf, Tbi; + Tb4 = Tb2 - Tb3; + Tbb = Tb7 - Tba; + Tbc = Tb4 - Tbb; + TbO = Tb4 + Tbb; + Tbf = Tbd - Tbe; + Tbi = Tbg - Tbh; + Tbj = Tbf - Tbi; + TbP = Tbf + Tbi; + } + Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); + TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); + TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); + TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); + } + { + E Tbv, TbR, TbC, TbS; + { + E Tbn, Tbu, Tby, TbB; + Tbn = Tbl - Tbm; + Tbu = Tbq - Tbt; + Tbv = Tbn - Tbu; + TbR = Tbn + Tbu; + Tby = Tbw - Tbx; + TbB = Tbz - TbA; + TbC = Tby - TbB; + TbS = Tby + TbB; + } + TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); + TbX = FMA(KP881921264, TbS, KP471396736 * TbR); + TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); + TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); + } + { + E Tb1, TbE, Tid, Tig; + Tb1 = TaL + Tb0; + TbE = Tbk + TbD; + ri[WS(rs, 45)] = Tb1 - TbE; + ri[WS(rs, 13)] = Tb1 + TbE; + Tid = TbG + TbH; + Tig = Tie + Tif; + ii[WS(rs, 13)] = Tid + Tig; + ii[WS(rs, 45)] = Tig - Tid; + } + { + E TbF, TbI, Tih, Tii; + TbF = TaL - Tb0; + TbI = TbG - TbH; + ri[WS(rs, 61)] = TbF - TbI; + ri[WS(rs, 29)] = TbF + TbI; + Tih = TbD - Tbk; + Tii = Tif - Tie; + ii[WS(rs, 29)] = Tih + Tii; + ii[WS(rs, 61)] = Tii - Tih; + } + { + E TbN, TbU, Ti5, Tia; + TbN = TbJ + TbM; + TbU = TbQ + TbT; + ri[WS(rs, 37)] = TbN - TbU; + ri[WS(rs, 5)] = TbN + TbU; + Ti5 = TbW + TbX; + Tia = Ti6 + Ti9; + ii[WS(rs, 5)] = Ti5 + Tia; + ii[WS(rs, 37)] = Tia - Ti5; + } + { + E TbV, TbY, Tib, Tic; + TbV = TbJ - TbM; + TbY = TbW - TbX; + ri[WS(rs, 53)] = TbV - TbY; + ri[WS(rs, 21)] = TbV + TbY; + Tib = TbT - TbQ; + Tic = Ti9 - Ti6; + ii[WS(rs, 21)] = Tib + Tic; + ii[WS(rs, 53)] = Tic - Tib; + } + } + { + E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; + E TcF; + { + E TbZ, Tc2, ThP, ThU; + TbZ = Taz + TaC; + Tc2 = Tc0 + Tc1; + Tc3 = TbZ - Tc2; + Tcv = TbZ + Tc2; + ThP = TaG + TaJ; + ThU = ThQ + ThT; + ThV = ThP + ThU; + Ti1 = ThU - ThP; + } + { + E Tc6, Tcw, Tc9, Tcx; + { + E Tc4, Tc5, Tc7, Tc8; + Tc4 = TaM + TaN; + Tc5 = TaP + TaQ; + Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); + Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); + Tc7 = TaT + TaU; + Tc8 = TaW + TaX; + Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); + Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); + } + Tca = Tc6 - Tc9; + Ti0 = Tcx - Tcw; + Tcy = Tcw + Tcx; + ThO = Tc6 + Tc9; + } + { + E Tce, TcA, Tch, TcB; + { + E Tcc, Tcd, Tcf, Tcg; + Tcc = Tbd + Tbe; + Tcd = Tba + Tb7; + Tce = Tcc - Tcd; + TcA = Tcc + Tcd; + Tcf = Tb2 + Tb3; + Tcg = Tbg + Tbh; + Tch = Tcf - Tcg; + TcB = Tcf + Tcg; + } + Tci = FMA(KP634393284, Tce, KP773010453 * Tch); + TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); + Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); + TcC = FMA(KP995184726, TcA, KP098017140 * TcB); + } + { + E Tcl, TcD, Tco, TcE; + { + E Tcj, Tck, Tcm, Tcn; + Tcj = Tbl + Tbm; + Tck = TbA + Tbz; + Tcl = Tcj - Tck; + TcD = Tcj + Tck; + Tcm = Tbw + Tbx; + Tcn = Tbq + Tbt; + Tco = Tcm - Tcn; + TcE = Tcm + Tcn; + } + Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); + TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); + Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); + TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); + } + { + E Tcb, Tcq, ThZ, Ti2; + Tcb = Tc3 + Tca; + Tcq = Tci + Tcp; + ri[WS(rs, 41)] = Tcb - Tcq; + ri[WS(rs, 9)] = Tcb + Tcq; + ThZ = Tcs + Tct; + Ti2 = Ti0 + Ti1; + ii[WS(rs, 9)] = ThZ + Ti2; + ii[WS(rs, 41)] = Ti2 - ThZ; + } + { + E Tcr, Tcu, Ti3, Ti4; + Tcr = Tc3 - Tca; + Tcu = Tcs - Tct; + ri[WS(rs, 57)] = Tcr - Tcu; + ri[WS(rs, 25)] = Tcr + Tcu; + Ti3 = Tcp - Tci; + Ti4 = Ti1 - Ti0; + ii[WS(rs, 25)] = Ti3 + Ti4; + ii[WS(rs, 57)] = Ti4 - Ti3; + } + { + E Tcz, TcG, ThN, ThW; + Tcz = Tcv + Tcy; + TcG = TcC + TcF; + ri[WS(rs, 33)] = Tcz - TcG; + ri[WS(rs, 1)] = Tcz + TcG; + ThN = TcI + TcJ; + ThW = ThO + ThV; + ii[WS(rs, 1)] = ThN + ThW; + ii[WS(rs, 33)] = ThW - ThN; + } + { + E TcH, TcK, ThX, ThY; + TcH = Tcv - Tcy; + TcK = TcI - TcJ; + ri[WS(rs, 49)] = TcH - TcK; + ri[WS(rs, 17)] = TcH + TcK; + ThX = TcF - TcC; + ThY = ThV - ThO; + ii[WS(rs, 17)] = ThX + ThY; + ii[WS(rs, 49)] = ThY - ThX; + } + } + { + E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; + E Tat; + { + E T9N, T9Q, Til, Tio; + T9N = T6b + T6m; + T9Q = T9O + T9P; + T9R = T9N - T9Q; + Taj = T9N + T9Q; + Til = T6y + T6J; + Tio = Tim + Tin; + Tip = Til + Tio; + Tiv = Tio - Til; + } + { + E T9U, Tak, T9X, Tal; + { + E T9S, T9T, T9V, T9W; + T9S = T6Q + T71; + T9T = T77 + T7a; + T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); + Tak = FMA(KP555570233, T9S, KP831469612 * T9T); + T9V = T7h + T7s; + T9W = T7y + T7B; + T9X = FMA(KP831469612, T9V, KP555570233 * T9W); + Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); + } + T9Y = T9U - T9X; + Tiu = Tal - Tak; + Tam = Tak + Tal; + Tik = T9U + T9X; + } + { + E Ta2, Tao, Ta5, Tap; + { + E Ta0, Ta1, Ta3, Ta4; + Ta0 = T8p + T8s; + Ta1 = T8i + T87; + Ta2 = Ta0 - Ta1; + Tao = Ta0 + Ta1; + Ta3 = T7K + T7V; + Ta4 = T8u + T8v; + Ta5 = Ta3 - Ta4; + Tap = Ta3 + Ta4; + } + Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); + Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); + Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); + Taq = FMA(KP956940335, Tao, KP290284677 * Tap); + } + { + E Ta9, Tar, Tac, Tas; + { + E Ta7, Ta8, Taa, Tab; + Ta7 = T8D + T8O; + Ta8 = T9o + T9n; + Ta9 = Ta7 - Ta8; + Tar = Ta7 + Ta8; + Taa = T9i + T9l; + Tab = T90 + T9b; + Tac = Taa - Tab; + Tas = Taa + Tab; + } + Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); + Tax = FMA(KP290284677, Tar, KP956940335 * Tas); + Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); + Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); + } + { + E T9Z, Tae, Tit, Tiw; + T9Z = T9R + T9Y; + Tae = Ta6 + Tad; + ri[WS(rs, 43)] = T9Z - Tae; + ri[WS(rs, 11)] = T9Z + Tae; + Tit = Tag + Tah; + Tiw = Tiu + Tiv; + ii[WS(rs, 11)] = Tit + Tiw; + ii[WS(rs, 43)] = Tiw - Tit; + } + { + E Taf, Tai, Tix, Tiy; + Taf = T9R - T9Y; + Tai = Tag - Tah; + ri[WS(rs, 59)] = Taf - Tai; + ri[WS(rs, 27)] = Taf + Tai; + Tix = Tad - Ta6; + Tiy = Tiv - Tiu; + ii[WS(rs, 27)] = Tix + Tiy; + ii[WS(rs, 59)] = Tiy - Tix; + } + { + E Tan, Tau, Tij, Tiq; + Tan = Taj + Tam; + Tau = Taq + Tat; + ri[WS(rs, 35)] = Tan - Tau; + ri[WS(rs, 3)] = Tan + Tau; + Tij = Taw + Tax; + Tiq = Tik + Tip; + ii[WS(rs, 3)] = Tij + Tiq; + ii[WS(rs, 35)] = Tiq - Tij; + } + { + E Tav, Tay, Tir, Tis; + Tav = Taj - Tam; + Tay = Taw - Tax; + ri[WS(rs, 51)] = Tav - Tay; + ri[WS(rs, 19)] = Tav + Tay; + Tir = Tat - Taq; + Tis = Tip - Tik; + ii[WS(rs, 19)] = Tir + Tis; + ii[WS(rs, 51)] = Tis - Tir; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 64}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 }; + +void X(codelet_t1_64) (planner *p) { + X(kdft_dit_register) (p, t1_64, &desc); +} +#endif /* HAVE_FMA */