Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/t1_20.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/t1_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1029 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:35:53 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */ + +/* + * This function contains 246 FP additions, 148 FP multiplications, + * (or, 136 additions, 38 multiplications, 110 fused multiply/add), + * 97 stack variables, 4 constants, and 80 memory accesses + */ +#include "t.h" + +static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { + E T4P, T4Y, T50, T4U, T4S, T4T, T4Z, T4V; + { + E T4N, T4r, T8, T2i, T4n, T2n, T4O, Tl, T2v, T3v, T40, T4b, TN, T2b, T3F; + E T3i, T2R, T3z, T3W, T4f, T27, T2f, T3J, T3a, T2K, T3y, T3T, T4e, T1G, T2e; + E T3I, T33, T2C, T3w, T43, T4c, T1e, T2c, T3G, T3p; + { + E T1, T4q, T3, T6, T2, T5; + T1 = ri[0]; + T4q = ii[0]; + T3 = ri[WS(rs, 10)]; + T6 = ii[WS(rs, 10)]; + T2 = W[18]; + T5 = W[19]; + { + E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti; + { + E T4o, T4, T9, T4p, T7; + Ta = ri[WS(rs, 5)]; + Td = ii[WS(rs, 5)]; + T4o = T2 * T6; + T4 = T2 * T3; + T9 = W[8]; + Tg = ri[WS(rs, 15)]; + T4p = FNMS(T5, T3, T4o); + T7 = FMA(T5, T6, T4); + T2j = T9 * Td; + Tb = T9 * Ta; + T4N = T4q - T4p; + T4r = T4p + T4q; + T8 = T1 + T7; + T2i = T1 - T7; + Tj = ii[WS(rs, 15)]; + Tf = W[28]; + } + Tc = W[9]; + Ti = W[29]; + { + E T3d, Ts, T2t, TL, TB, TE, TD, T3f, Ty, T2q, TC; + { + E TH, TK, TJ, T2s, TI; + { + E To, Tr, Tp, T3c, Tq, TG; + { + E T2k, Te, T2m, Tk, T2l, Th, Tn; + To = ri[WS(rs, 4)]; + T2l = Tf * Tj; + Th = Tf * Tg; + T2k = FNMS(Tc, Ta, T2j); + Te = FMA(Tc, Td, Tb); + T2m = FNMS(Ti, Tg, T2l); + Tk = FMA(Ti, Tj, Th); + Tr = ii[WS(rs, 4)]; + Tn = W[6]; + T4n = T2k + T2m; + T2n = T2k - T2m; + T4O = Te - Tk; + Tl = Te + Tk; + Tp = Tn * To; + T3c = Tn * Tr; + } + Tq = W[7]; + TH = ri[WS(rs, 19)]; + TK = ii[WS(rs, 19)]; + TG = W[36]; + T3d = FNMS(Tq, To, T3c); + Ts = FMA(Tq, Tr, Tp); + TJ = W[37]; + T2s = TG * TK; + TI = TG * TH; + } + { + E Tu, Tx, Tt, Tw, T3e, Tv, TA; + Tu = ri[WS(rs, 14)]; + Tx = ii[WS(rs, 14)]; + T2t = FNMS(TJ, TH, T2s); + TL = FMA(TJ, TK, TI); + Tt = W[26]; + Tw = W[27]; + TB = ri[WS(rs, 9)]; + TE = ii[WS(rs, 9)]; + T3e = Tt * Tx; + Tv = Tt * Tu; + TA = W[16]; + TD = W[17]; + T3f = FNMS(Tw, Tu, T3e); + Ty = FMA(Tw, Tx, Tv); + T2q = TA * TE; + TC = TA * TB; + } + } + { + E T3g, T3Y, Tz, T2p, T2r, TF; + T3g = T3d - T3f; + T3Y = T3d + T3f; + Tz = Ts + Ty; + T2p = Ts - Ty; + T2r = FNMS(TD, TB, T2q); + TF = FMA(TD, TE, TC); + { + E T3Z, T2u, T3h, TM; + T3Z = T2r + T2t; + T2u = T2r - T2t; + T3h = TF - TL; + TM = TF + TL; + T2v = T2p - T2u; + T3v = T2p + T2u; + T40 = T3Y - T3Z; + T4b = T3Y + T3Z; + TN = Tz - TM; + T2b = Tz + TM; + T3F = T3g - T3h; + T3i = T3g + T3h; + } + } + } + } + } + { + E T35, T1M, T2P, T25, T1V, T1Y, T1X, T37, T1S, T2M, T1W; + { + E T21, T24, T23, T2O, T22; + { + E T1I, T1L, T1H, T1K, T34, T1J, T20; + T1I = ri[WS(rs, 12)]; + T1L = ii[WS(rs, 12)]; + T1H = W[22]; + T1K = W[23]; + T21 = ri[WS(rs, 7)]; + T24 = ii[WS(rs, 7)]; + T34 = T1H * T1L; + T1J = T1H * T1I; + T20 = W[12]; + T23 = W[13]; + T35 = FNMS(T1K, T1I, T34); + T1M = FMA(T1K, T1L, T1J); + T2O = T20 * T24; + T22 = T20 * T21; + } + { + E T1O, T1R, T1N, T1Q, T36, T1P, T1U; + T1O = ri[WS(rs, 2)]; + T1R = ii[WS(rs, 2)]; + T2P = FNMS(T23, T21, T2O); + T25 = FMA(T23, T24, T22); + T1N = W[2]; + T1Q = W[3]; + T1V = ri[WS(rs, 17)]; + T1Y = ii[WS(rs, 17)]; + T36 = T1N * T1R; + T1P = T1N * T1O; + T1U = W[32]; + T1X = W[33]; + T37 = FNMS(T1Q, T1O, T36); + T1S = FMA(T1Q, T1R, T1P); + T2M = T1U * T1Y; + T1W = T1U * T1V; + } + } + { + E T38, T3U, T1T, T2L, T2N, T1Z; + T38 = T35 - T37; + T3U = T35 + T37; + T1T = T1M + T1S; + T2L = T1M - T1S; + T2N = FNMS(T1X, T1V, T2M); + T1Z = FMA(T1X, T1Y, T1W); + { + E T3V, T2Q, T39, T26; + T3V = T2N + T2P; + T2Q = T2N - T2P; + T39 = T1Z - T25; + T26 = T1Z + T25; + T2R = T2L - T2Q; + T3z = T2L + T2Q; + T3W = T3U - T3V; + T4f = T3U + T3V; + T27 = T1T - T26; + T2f = T1T + T26; + T3J = T38 - T39; + T3a = T38 + T39; + } + } + } + { + E T2Y, T1l, T2I, T1E, T1u, T1x, T1w, T30, T1r, T2F, T1v; + { + E T1A, T1D, T1C, T2H, T1B; + { + E T1h, T1k, T1g, T1j, T2X, T1i, T1z; + T1h = ri[WS(rs, 8)]; + T1k = ii[WS(rs, 8)]; + T1g = W[14]; + T1j = W[15]; + T1A = ri[WS(rs, 3)]; + T1D = ii[WS(rs, 3)]; + T2X = T1g * T1k; + T1i = T1g * T1h; + T1z = W[4]; + T1C = W[5]; + T2Y = FNMS(T1j, T1h, T2X); + T1l = FMA(T1j, T1k, T1i); + T2H = T1z * T1D; + T1B = T1z * T1A; + } + { + E T1n, T1q, T1m, T1p, T2Z, T1o, T1t; + T1n = ri[WS(rs, 18)]; + T1q = ii[WS(rs, 18)]; + T2I = FNMS(T1C, T1A, T2H); + T1E = FMA(T1C, T1D, T1B); + T1m = W[34]; + T1p = W[35]; + T1u = ri[WS(rs, 13)]; + T1x = ii[WS(rs, 13)]; + T2Z = T1m * T1q; + T1o = T1m * T1n; + T1t = W[24]; + T1w = W[25]; + T30 = FNMS(T1p, T1n, T2Z); + T1r = FMA(T1p, T1q, T1o); + T2F = T1t * T1x; + T1v = T1t * T1u; + } + } + { + E T31, T3R, T1s, T2E, T2G, T1y; + T31 = T2Y - T30; + T3R = T2Y + T30; + T1s = T1l + T1r; + T2E = T1l - T1r; + T2G = FNMS(T1w, T1u, T2F); + T1y = FMA(T1w, T1x, T1v); + { + E T3S, T2J, T32, T1F; + T3S = T2G + T2I; + T2J = T2G - T2I; + T32 = T1y - T1E; + T1F = T1y + T1E; + T2K = T2E - T2J; + T3y = T2E + T2J; + T3T = T3R - T3S; + T4e = T3R + T3S; + T1G = T1s - T1F; + T2e = T1s + T1F; + T3I = T31 - T32; + T33 = T31 + T32; + } + } + } + { + E T3k, TT, T2A, T1c, T12, T15, T14, T3m, TZ, T2x, T13; + { + E T18, T1b, T1a, T2z, T19; + { + E TP, TS, TO, TR, T3j, TQ, T17; + TP = ri[WS(rs, 16)]; + TS = ii[WS(rs, 16)]; + TO = W[30]; + TR = W[31]; + T18 = ri[WS(rs, 11)]; + T1b = ii[WS(rs, 11)]; + T3j = TO * TS; + TQ = TO * TP; + T17 = W[20]; + T1a = W[21]; + T3k = FNMS(TR, TP, T3j); + TT = FMA(TR, TS, TQ); + T2z = T17 * T1b; + T19 = T17 * T18; + } + { + E TV, TY, TU, TX, T3l, TW, T11; + TV = ri[WS(rs, 6)]; + TY = ii[WS(rs, 6)]; + T2A = FNMS(T1a, T18, T2z); + T1c = FMA(T1a, T1b, T19); + TU = W[10]; + TX = W[11]; + T12 = ri[WS(rs, 1)]; + T15 = ii[WS(rs, 1)]; + T3l = TU * TY; + TW = TU * TV; + T11 = W[0]; + T14 = W[1]; + T3m = FNMS(TX, TV, T3l); + TZ = FMA(TX, TY, TW); + T2x = T11 * T15; + T13 = T11 * T12; + } + } + { + E T3n, T41, T10, T2w, T2y, T16; + T3n = T3k - T3m; + T41 = T3k + T3m; + T10 = TT + TZ; + T2w = TT - TZ; + T2y = FNMS(T14, T12, T2x); + T16 = FMA(T14, T15, T13); + { + E T42, T2B, T3o, T1d; + T42 = T2y + T2A; + T2B = T2y - T2A; + T3o = T16 - T1c; + T1d = T16 + T1c; + T2C = T2w - T2B; + T3w = T2w + T2B; + T43 = T41 - T42; + T4c = T41 + T42; + T1e = T10 - T1d; + T2c = T10 + T1d; + T3G = T3n - T3o; + T3p = T3n + T3o; + } + } + } + { + E T4s, T4k, T4l, T4h, T4j, T49, T4y, T4A, T48; + { + E T4D, T4C, T2a, T47, T45, T4B, T4M, T4K, T46, T3Q; + { + E Tm, T1f, T4J, T4I, T28, T3X, T44, T29, T3P, T3O; + T4D = T3T + T3W; + T3X = T3T - T3W; + T44 = T40 - T43; + T4C = T40 + T43; + T2a = T8 + Tl; + Tm = T8 - Tl; + T1f = TN + T1e; + T4J = TN - T1e; + T4I = T1G - T27; + T28 = T1G + T27; + T47 = FMA(KP618033988, T3X, T44); + T45 = FNMS(KP618033988, T44, T3X); + T29 = T1f + T28; + T3P = T1f - T28; + T4B = T4r - T4n; + T4s = T4n + T4r; + ri[WS(rs, 10)] = Tm + T29; + T3O = FNMS(KP250000000, T29, Tm); + T4M = FMA(KP618033988, T4I, T4J); + T4K = FNMS(KP618033988, T4J, T4I); + T46 = FMA(KP559016994, T3P, T3O); + T3Q = FNMS(KP559016994, T3P, T3O); + } + { + E T2d, T4w, T4x, T2g, T2h; + { + E T4d, T4G, T4F, T4g, T4E, T4L, T4H; + T4k = T4b + T4c; + T4d = T4b - T4c; + T4G = T4C - T4D; + T4E = T4C + T4D; + ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q); + ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q); + ri[WS(rs, 6)] = FMA(KP951056516, T47, T46); + ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46); + ii[WS(rs, 10)] = T4E + T4B; + T4F = FNMS(KP250000000, T4E, T4B); + T4g = T4e - T4f; + T4l = T4e + T4f; + T2d = T2b + T2c; + T4w = T2b - T2c; + T4L = FMA(KP559016994, T4G, T4F); + T4H = FNMS(KP559016994, T4G, T4F); + T4h = FMA(KP618033988, T4g, T4d); + T4j = FNMS(KP618033988, T4d, T4g); + ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H); + ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); + ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L); + ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L); + T4x = T2e - T2f; + T2g = T2e + T2f; + } + T2h = T2d + T2g; + T49 = T2d - T2g; + T4y = FMA(KP618033988, T4x, T4w); + T4A = FNMS(KP618033988, T4w, T4x); + ri[0] = T2a + T2h; + T48 = FNMS(KP250000000, T2h, T2a); + } + } + { + E T3u, T51, T5a, T5c, T56, T54; + { + E T53, T52, T3t, T3r, T2o, T59, T58, T2T, T2V, T4u, T4t, T2U, T3s, T2W; + { + E T3b, T3q, T4i, T4a, T4m; + T53 = T33 + T3a; + T3b = T33 - T3a; + T3q = T3i - T3p; + T52 = T3i + T3p; + T4i = FNMS(KP559016994, T49, T48); + T4a = FMA(KP559016994, T49, T48); + T4m = T4k + T4l; + T4u = T4k - T4l; + ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a); + ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a); + ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i); + ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i); + ii[0] = T4m + T4s; + T4t = FNMS(KP250000000, T4m, T4s); + T3t = FMA(KP618033988, T3b, T3q); + T3r = FNMS(KP618033988, T3q, T3b); + } + T3u = T2i + T2n; + T2o = T2i - T2n; + { + E T4v, T4z, T2D, T2S; + T4v = FMA(KP559016994, T4u, T4t); + T4z = FNMS(KP559016994, T4u, T4t); + T2D = T2v + T2C; + T59 = T2v - T2C; + T58 = T2K - T2R; + T2S = T2K + T2R; + ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v); + ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); + ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z); + ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z); + T2T = T2D + T2S; + T2V = T2D - T2S; + } + ri[WS(rs, 15)] = T2o + T2T; + T2U = FNMS(KP250000000, T2T, T2o); + T51 = T4O + T4N; + T4P = T4N - T4O; + T5a = FNMS(KP618033988, T59, T58); + T5c = FMA(KP618033988, T58, T59); + T3s = FMA(KP559016994, T2V, T2U); + T2W = FNMS(KP559016994, T2V, T2U); + ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); + ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); + ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s); + ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s); + T56 = T52 - T53; + T54 = T52 + T53; + } + { + E T4Q, T4R, T3N, T3L, T4W, T4X, T3B, T3D, T3H, T3K, T55, T3C, T3M, T3E; + T4Q = T3F + T3G; + T3H = T3F - T3G; + T3K = T3I - T3J; + T4R = T3I + T3J; + ii[WS(rs, 15)] = T54 + T51; + T55 = FNMS(KP250000000, T54, T51); + T3N = FNMS(KP618033988, T3H, T3K); + T3L = FMA(KP618033988, T3K, T3H); + { + E T57, T5b, T3x, T3A; + T57 = FNMS(KP559016994, T56, T55); + T5b = FMA(KP559016994, T56, T55); + T3x = T3v + T3w; + T4W = T3v - T3w; + T4X = T3y - T3z; + T3A = T3y + T3z; + ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57); + ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57); + ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b); + ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b); + T3B = T3x + T3A; + T3D = T3x - T3A; + } + ri[WS(rs, 5)] = T3u + T3B; + T3C = FNMS(KP250000000, T3B, T3u); + T4Y = FMA(KP618033988, T4X, T4W); + T50 = FNMS(KP618033988, T4W, T4X); + T3M = FNMS(KP559016994, T3D, T3C); + T3E = FMA(KP559016994, T3D, T3C); + ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); + ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); + ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M); + ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M); + T4U = T4Q - T4R; + T4S = T4Q + T4R; + } + } + } + } + ii[WS(rs, 5)] = T4S + T4P; + T4T = FNMS(KP250000000, T4S, T4P); + T4Z = FNMS(KP559016994, T4U, T4T); + T4V = FMA(KP559016994, T4U, T4T); + ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V); + ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V); + ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z); + ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 20}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 }; + +void X(codelet_t1_20) (planner *p) { + X(kdft_dit_register) (p, t1_20, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include t.h */ + +/* + * This function contains 246 FP additions, 124 FP multiplications, + * (or, 184 additions, 62 multiplications, 62 fused multiply/add), + * 85 stack variables, 4 constants, and 80 memory accesses + */ +#include "t.h" + +static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { + E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D; + E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G; + E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e; + E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B; + { + E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; + T1 = ri[0]; + T3O = ii[0]; + { + E T3, T5, T2, T4; + T3 = ri[WS(rs, 10)]; + T5 = ii[WS(rs, 10)]; + T2 = W[18]; + T4 = W[19]; + T6 = FMA(T2, T3, T4 * T5); + T3N = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = ri[WS(rs, 5)]; + Tb = ii[WS(rs, 5)]; + T8 = W[8]; + Ta = W[9]; + Tc = FMA(T8, T9, Ta * Tb); + T2n = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = ri[WS(rs, 15)]; + Tg = ii[WS(rs, 15)]; + Td = W[28]; + Tf = W[29]; + Th = FMA(Td, Te, Tf * Tg); + T2o = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, T4e, T4f; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 - Ti; + T1R = T7 + Ti; + T4e = T3O - T3N; + T4f = Tc - Th; + T4g = T4e - T4f; + T4p = T4f + T4e; + } + { + E T2m, T2p, T3M, T3P; + T2m = T1 - T6; + T2p = T2n - T2o; + T2q = T2m - T2p; + T37 = T2m + T2p; + T3M = T2n + T2o; + T3P = T3N + T3O; + T3Q = T3M + T3P; + T42 = T3P - T3M; + } + } + { + E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26; + E T2H; + { + E T19, T1Z, T1e, T20; + { + E T16, T18, T15, T17; + T16 = ri[WS(rs, 8)]; + T18 = ii[WS(rs, 8)]; + T15 = W[14]; + T17 = W[15]; + T19 = FMA(T15, T16, T17 * T18); + T1Z = FNMS(T17, T16, T15 * T18); + } + { + E T1b, T1d, T1a, T1c; + T1b = ri[WS(rs, 18)]; + T1d = ii[WS(rs, 18)]; + T1a = W[34]; + T1c = W[35]; + T1e = FMA(T1a, T1b, T1c * T1d); + T20 = FNMS(T1c, T1b, T1a * T1d); + } + T1f = T19 + T1e; + T3g = T1Z + T20; + T21 = T1Z - T20; + T2C = T19 - T1e; + } + { + E T1H, T2I, T1M, T2J; + { + E T1E, T1G, T1D, T1F; + T1E = ri[WS(rs, 17)]; + T1G = ii[WS(rs, 17)]; + T1D = W[32]; + T1F = W[33]; + T1H = FMA(T1D, T1E, T1F * T1G); + T2I = FNMS(T1F, T1E, T1D * T1G); + } + { + E T1J, T1L, T1I, T1K; + T1J = ri[WS(rs, 7)]; + T1L = ii[WS(rs, 7)]; + T1I = W[12]; + T1K = W[13]; + T1M = FMA(T1I, T1J, T1K * T1L); + T2J = FNMS(T1K, T1J, T1I * T1L); + } + T1N = T1H + T1M; + T3k = T2I + T2J; + T27 = T1H - T1M; + T2K = T2I - T2J; + } + { + E T1k, T2D, T1p, T2E; + { + E T1h, T1j, T1g, T1i; + T1h = ri[WS(rs, 13)]; + T1j = ii[WS(rs, 13)]; + T1g = W[24]; + T1i = W[25]; + T1k = FMA(T1g, T1h, T1i * T1j); + T2D = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1m, T1o, T1l, T1n; + T1m = ri[WS(rs, 3)]; + T1o = ii[WS(rs, 3)]; + T1l = W[4]; + T1n = W[5]; + T1p = FMA(T1l, T1m, T1n * T1o); + T2E = FNMS(T1n, T1m, T1l * T1o); + } + T1q = T1k + T1p; + T3h = T2D + T2E; + T22 = T1k - T1p; + T2F = T2D - T2E; + } + { + E T1w, T24, T1B, T25; + { + E T1t, T1v, T1s, T1u; + T1t = ri[WS(rs, 12)]; + T1v = ii[WS(rs, 12)]; + T1s = W[22]; + T1u = W[23]; + T1w = FMA(T1s, T1t, T1u * T1v); + T24 = FNMS(T1u, T1t, T1s * T1v); + } + { + E T1y, T1A, T1x, T1z; + T1y = ri[WS(rs, 2)]; + T1A = ii[WS(rs, 2)]; + T1x = W[2]; + T1z = W[3]; + T1B = FMA(T1x, T1y, T1z * T1A); + T25 = FNMS(T1z, T1y, T1x * T1A); + } + T1C = T1w + T1B; + T3j = T24 + T25; + T26 = T24 - T25; + T2H = T1w - T1B; + } + T1r = T1f - T1q; + T1O = T1C - T1N; + T1P = T1r + T1O; + T3i = T3g - T3h; + T3l = T3j - T3k; + T44 = T3i + T3l; + T3D = T3g + T3h; + T3E = T3j + T3k; + T3K = T3D + T3E; + T1V = T1f + T1q; + T1W = T1C + T1N; + T1X = T1V + T1W; + T23 = T21 + T22; + T28 = T26 + T27; + T4r = T23 + T28; + T2W = T21 - T22; + T2X = T26 - T27; + T4c = T2W + T2X; + T33 = T2C + T2F; + T34 = T2H + T2K; + T35 = T33 + T34; + T2G = T2C - T2F; + T2L = T2H - T2K; + T2M = T2G + T2L; + } + { + E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h; + E T2w; + { + E To, T2a, Tt, T2b; + { + E Tl, Tn, Tk, Tm; + Tl = ri[WS(rs, 4)]; + Tn = ii[WS(rs, 4)]; + Tk = W[6]; + Tm = W[7]; + To = FMA(Tk, Tl, Tm * Tn); + T2a = FNMS(Tm, Tl, Tk * Tn); + } + { + E Tq, Ts, Tp, Tr; + Tq = ri[WS(rs, 14)]; + Ts = ii[WS(rs, 14)]; + Tp = W[26]; + Tr = W[27]; + Tt = FMA(Tp, Tq, Tr * Ts); + T2b = FNMS(Tr, Tq, Tp * Ts); + } + Tu = To + Tt; + T3n = T2a + T2b; + T2c = T2a - T2b; + T2r = To - Tt; + } + { + E TW, T2x, T11, T2y; + { + E TT, TV, TS, TU; + TT = ri[WS(rs, 1)]; + TV = ii[WS(rs, 1)]; + TS = W[0]; + TU = W[1]; + TW = FMA(TS, TT, TU * TV); + T2x = FNMS(TU, TT, TS * TV); + } + { + E TY, T10, TX, TZ; + TY = ri[WS(rs, 11)]; + T10 = ii[WS(rs, 11)]; + TX = W[20]; + TZ = W[21]; + T11 = FMA(TX, TY, TZ * T10); + T2y = FNMS(TZ, TY, TX * T10); + } + T12 = TW + T11; + T3r = T2x + T2y; + T2i = TW - T11; + T2z = T2x - T2y; + } + { + E Tz, T2s, TE, T2t; + { + E Tw, Ty, Tv, Tx; + Tw = ri[WS(rs, 9)]; + Ty = ii[WS(rs, 9)]; + Tv = W[16]; + Tx = W[17]; + Tz = FMA(Tv, Tw, Tx * Ty); + T2s = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = ri[WS(rs, 19)]; + TD = ii[WS(rs, 19)]; + TA = W[36]; + TC = W[37]; + TE = FMA(TA, TB, TC * TD); + T2t = FNMS(TC, TB, TA * TD); + } + TF = Tz + TE; + T3o = T2s + T2t; + T2d = Tz - TE; + T2u = T2s - T2t; + } + { + E TL, T2f, TQ, T2g; + { + E TI, TK, TH, TJ; + TI = ri[WS(rs, 16)]; + TK = ii[WS(rs, 16)]; + TH = W[30]; + TJ = W[31]; + TL = FMA(TH, TI, TJ * TK); + T2f = FNMS(TJ, TI, TH * TK); + } + { + E TN, TP, TM, TO; + TN = ri[WS(rs, 6)]; + TP = ii[WS(rs, 6)]; + TM = W[10]; + TO = W[11]; + TQ = FMA(TM, TN, TO * TP); + T2g = FNMS(TO, TN, TM * TP); + } + TR = TL + TQ; + T3q = T2f + T2g; + T2h = T2f - T2g; + T2w = TL - TQ; + } + TG = Tu - TF; + T13 = TR - T12; + T14 = TG + T13; + T3p = T3n - T3o; + T3s = T3q - T3r; + T43 = T3p + T3s; + T3A = T3n + T3o; + T3B = T3q + T3r; + T3J = T3A + T3B; + T1S = Tu + TF; + T1T = TR + T12; + T1U = T1S + T1T; + T2e = T2c + T2d; + T2j = T2h + T2i; + T4q = T2e + T2j; + T2T = T2c - T2d; + T2U = T2h - T2i; + T4b = T2T + T2U; + T30 = T2r + T2u; + T31 = T2w + T2z; + T32 = T30 + T31; + T2v = T2r - T2u; + T2A = T2w - T2z; + T2B = T2v + T2A; + } + { + E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; + T3e = KP559016994 * (T14 - T1P); + T1Q = T14 + T1P; + T3d = FNMS(KP250000000, T1Q, Tj); + T3m = T3i - T3l; + T3t = T3p - T3s; + T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); + T3w = FMA(KP951056516, T3t, KP587785252 * T3m); + ri[WS(rs, 10)] = Tj + T1Q; + T3v = T3e + T3d; + ri[WS(rs, 14)] = T3v - T3w; + ri[WS(rs, 6)] = T3v + T3w; + T3f = T3d - T3e; + ri[WS(rs, 2)] = T3f - T3u; + ri[WS(rs, 18)] = T3f + T3u; + } + { + E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48; + T47 = KP559016994 * (T43 - T44); + T45 = T43 + T44; + T46 = FNMS(KP250000000, T45, T42); + T3Z = T1r - T1O; + T40 = TG - T13; + T41 = FNMS(KP587785252, T40, KP951056516 * T3Z); + T4a = FMA(KP951056516, T40, KP587785252 * T3Z); + ii[WS(rs, 10)] = T45 + T42; + T49 = T47 + T46; + ii[WS(rs, 6)] = T49 - T4a; + ii[WS(rs, 14)] = T4a + T49; + T48 = T46 - T47; + ii[WS(rs, 2)] = T41 + T48; + ii[WS(rs, 18)] = T48 - T41; + } + { + E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; + T3x = KP559016994 * (T1U - T1X); + T1Y = T1U + T1X; + T3y = FNMS(KP250000000, T1Y, T1R); + T3C = T3A - T3B; + T3F = T3D - T3E; + T3G = FMA(KP951056516, T3C, KP587785252 * T3F); + T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); + ri[0] = T1R + T1Y; + T3H = T3y - T3x; + ri[WS(rs, 12)] = T3H - T3I; + ri[WS(rs, 8)] = T3H + T3I; + T3z = T3x + T3y; + ri[WS(rs, 4)] = T3z - T3G; + ri[WS(rs, 16)] = T3z + T3G; + } + { + E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W; + T3U = KP559016994 * (T3J - T3K); + T3L = T3J + T3K; + T3V = FNMS(KP250000000, T3L, T3Q); + T3R = T1S - T1T; + T3S = T1V - T1W; + T3T = FMA(KP951056516, T3R, KP587785252 * T3S); + T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S); + ii[0] = T3L + T3Q; + T3X = T3V - T3U; + ii[WS(rs, 8)] = T3X - T3Y; + ii[WS(rs, 12)] = T3Y + T3X; + T3W = T3U + T3V; + ii[WS(rs, 4)] = T3T + T3W; + ii[WS(rs, 16)] = T3W - T3T; + } + { + E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; + T2P = KP559016994 * (T2B - T2M); + T2N = T2B + T2M; + T2O = FNMS(KP250000000, T2N, T2q); + T29 = T23 - T28; + T2k = T2e - T2j; + T2l = FNMS(KP587785252, T2k, KP951056516 * T29); + T2R = FMA(KP951056516, T2k, KP587785252 * T29); + ri[WS(rs, 15)] = T2q + T2N; + T2S = T2P + T2O; + ri[WS(rs, 11)] = T2R + T2S; + ri[WS(rs, 19)] = T2S - T2R; + T2Q = T2O - T2P; + ri[WS(rs, 3)] = T2l + T2Q; + ri[WS(rs, 7)] = T2Q - T2l; + } + { + E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v; + T4u = KP559016994 * (T4q - T4r); + T4s = T4q + T4r; + T4t = FNMS(KP250000000, T4s, T4p); + T4w = T2G - T2L; + T4x = T2v - T2A; + T4y = FNMS(KP587785252, T4x, KP951056516 * T4w); + T4A = FMA(KP951056516, T4x, KP587785252 * T4w); + ii[WS(rs, 15)] = T4s + T4p; + T4z = T4u + T4t; + ii[WS(rs, 11)] = T4z - T4A; + ii[WS(rs, 19)] = T4A + T4z; + T4v = T4t - T4u; + ii[WS(rs, 3)] = T4v - T4y; + ii[WS(rs, 7)] = T4y + T4v; + } + { + E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; + T36 = KP559016994 * (T32 - T35); + T38 = T32 + T35; + T39 = FNMS(KP250000000, T38, T37); + T2V = T2T - T2U; + T2Y = T2W - T2X; + T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); + T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); + ri[WS(rs, 5)] = T37 + T38; + T3c = T39 - T36; + ri[WS(rs, 13)] = T3b + T3c; + ri[WS(rs, 17)] = T3c - T3b; + T3a = T36 + T39; + ri[WS(rs, 1)] = T2Z + T3a; + ri[WS(rs, 9)] = T3a - T2Z; + } + { + E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j; + T4d = KP559016994 * (T4b - T4c); + T4h = T4b + T4c; + T4i = FNMS(KP250000000, T4h, T4g); + T4k = T30 - T31; + T4l = T33 - T34; + T4m = FMA(KP951056516, T4k, KP587785252 * T4l); + T4o = FNMS(KP587785252, T4k, KP951056516 * T4l); + ii[WS(rs, 5)] = T4h + T4g; + T4n = T4i - T4d; + ii[WS(rs, 13)] = T4n - T4o; + ii[WS(rs, 17)] = T4o + T4n; + T4j = T4d + T4i; + ii[WS(rs, 1)] = T4j - T4m; + ii[WS(rs, 9)] = T4m + T4j; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 20}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 }; + +void X(codelet_t1_20) (planner *p) { + X(kdft_dit_register) (p, t1_20, &desc); +} +#endif /* HAVE_FMA */