Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/dft/scalar/codelets/q1_3.c @ 95:89f5e221ed7b
Add FFTW3
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/dft/scalar/codelets/q1_3.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,316 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:36:23 EST 2012 */ + +#include "codelet-dft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_twidsq.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include q.h */ + +/* + * This function contains 48 FP additions, 42 FP multiplications, + * (or, 18 additions, 12 multiplications, 30 fused multiply/add), + * 56 stack variables, 2 constants, and 36 memory accesses + */ +#include "q.h" + +static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { + E Tk, Tn, Tm, To, Tl; + { + E T1, Td, T4, Tg, Tp, T9, Te, T6, Tf, TB, TE, Ts, TZ, Tu, Tx; + E TC, TN, TO, TD, TV, T10, TP, Tq, Tr; + { + E T2, T3, T7, T8; + T1 = rio[0]; + T2 = rio[WS(rs, 1)]; + T3 = rio[WS(rs, 2)]; + Td = iio[0]; + T7 = iio[WS(rs, 1)]; + T8 = iio[WS(rs, 2)]; + T4 = T2 + T3; + Tg = T3 - T2; + Tp = rio[WS(vs, 1)]; + T9 = T7 - T8; + Te = T7 + T8; + T6 = FNMS(KP500000000, T4, T1); + Tq = rio[WS(vs, 1) + WS(rs, 1)]; + Tr = rio[WS(vs, 1) + WS(rs, 2)]; + Tf = FNMS(KP500000000, Te, Td); + } + { + E Tv, Tw, TT, TU; + TB = iio[WS(vs, 1)]; + Tv = iio[WS(vs, 1) + WS(rs, 1)]; + TE = Tr - Tq; + Ts = Tq + Tr; + Tw = iio[WS(vs, 1) + WS(rs, 2)]; + TZ = iio[WS(vs, 2)]; + TT = iio[WS(vs, 2) + WS(rs, 1)]; + Tu = FNMS(KP500000000, Ts, Tp); + Tx = Tv - Tw; + TC = Tv + Tw; + TU = iio[WS(vs, 2) + WS(rs, 2)]; + TN = rio[WS(vs, 2)]; + TO = rio[WS(vs, 2) + WS(rs, 1)]; + TD = FNMS(KP500000000, TC, TB); + TV = TT - TU; + T10 = TT + TU; + TP = rio[WS(vs, 2) + WS(rs, 2)]; + } + { + E T11, T12, TS, TQ; + rio[0] = T1 + T4; + iio[0] = Td + Te; + T11 = FNMS(KP500000000, T10, TZ); + T12 = TP - TO; + TQ = TO + TP; + rio[WS(rs, 1)] = Tp + Ts; + iio[WS(rs, 1)] = TB + TC; + iio[WS(rs, 2)] = TZ + T10; + TS = FNMS(KP500000000, TQ, TN); + rio[WS(rs, 2)] = TN + TQ; + { + E TW, T13, Ty, TI, TL, TF, TH, TK; + { + E Ta, Th, T5, Tc; + Tk = FNMS(KP866025403, T9, T6); + Ta = FMA(KP866025403, T9, T6); + Th = FMA(KP866025403, Tg, Tf); + Tn = FNMS(KP866025403, Tg, Tf); + T5 = W[0]; + Tc = W[1]; + { + E T16, T19, T18, T1a, T17, Ti, Tb, T15; + TW = FMA(KP866025403, TV, TS); + T16 = FNMS(KP866025403, TV, TS); + T19 = FNMS(KP866025403, T12, T11); + T13 = FMA(KP866025403, T12, T11); + Ti = T5 * Th; + Tb = T5 * Ta; + T15 = W[2]; + T18 = W[3]; + iio[WS(vs, 1)] = FNMS(Tc, Ta, Ti); + rio[WS(vs, 1)] = FMA(Tc, Th, Tb); + T1a = T15 * T19; + T17 = T15 * T16; + Ty = FMA(KP866025403, Tx, Tu); + TI = FNMS(KP866025403, Tx, Tu); + TL = FNMS(KP866025403, TE, TD); + TF = FMA(KP866025403, TE, TD); + iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T18, T16, T1a); + rio[WS(vs, 2) + WS(rs, 2)] = FMA(T18, T19, T17); + TH = W[2]; + TK = W[3]; + } + } + { + E TA, TG, Tz, TM, TJ, Tt; + TM = TH * TL; + TJ = TH * TI; + Tt = W[0]; + TA = W[1]; + iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TK, TI, TM); + rio[WS(vs, 2) + WS(rs, 1)] = FMA(TK, TL, TJ); + TG = Tt * TF; + Tz = Tt * Ty; + { + E TR, TY, T14, TX, Tj; + iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TA, Ty, TG); + rio[WS(vs, 1) + WS(rs, 1)] = FMA(TA, TF, Tz); + TR = W[0]; + TY = W[1]; + T14 = TR * T13; + TX = TR * TW; + Tj = W[2]; + Tm = W[3]; + iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TY, TW, T14); + rio[WS(vs, 1) + WS(rs, 2)] = FMA(TY, T13, TX); + To = Tj * Tn; + Tl = Tj * Tk; + } + } + } + } + } + iio[WS(vs, 2)] = FNMS(Tm, Tk, To); + rio[WS(vs, 2)] = FMA(Tm, Tn, Tl); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 3}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {18, 12, 30, 0}, 0, 0, 0 }; + +void X(codelet_q1_3) (planner *p) { + X(kdft_difsq_register) (p, q1_3, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 3 -name q1_3 -include q.h */ + +/* + * This function contains 48 FP additions, 36 FP multiplications, + * (or, 30 additions, 18 multiplications, 18 fused multiply/add), + * 35 stack variables, 2 constants, and 36 memory accesses + */ +#include "q.h" + +static void q1_3(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + (mb * 4); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 4, MAKE_VOLATILE_STRIDE(6, rs), MAKE_VOLATILE_STRIDE(0, vs)) { + E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt; + E Tz, TR, TS, TN, TT, TF, TI, TK, TQ; + { + E T2, T3, Tr, Ts; + T1 = rio[0]; + T2 = rio[WS(rs, 1)]; + T3 = rio[WS(rs, 2)]; + T4 = T2 + T3; + T6 = FNMS(KP500000000, T4, T1); + Tc = KP866025403 * (T3 - T2); + { + E T7, T8, Tm, Tn; + Td = iio[0]; + T7 = iio[WS(rs, 1)]; + T8 = iio[WS(rs, 2)]; + Te = T7 + T8; + T9 = KP866025403 * (T7 - T8); + Tf = FNMS(KP500000000, Te, Td); + Tl = rio[WS(vs, 1)]; + Tm = rio[WS(vs, 1) + WS(rs, 1)]; + Tn = rio[WS(vs, 1) + WS(rs, 2)]; + To = Tm + Tn; + Tq = FNMS(KP500000000, To, Tl); + Tw = KP866025403 * (Tn - Tm); + } + Tx = iio[WS(vs, 1)]; + Tr = iio[WS(vs, 1) + WS(rs, 1)]; + Ts = iio[WS(vs, 1) + WS(rs, 2)]; + Ty = Tr + Ts; + Tt = KP866025403 * (Tr - Ts); + Tz = FNMS(KP500000000, Ty, Tx); + { + E TL, TM, TG, TH; + TR = iio[WS(vs, 2)]; + TL = iio[WS(vs, 2) + WS(rs, 1)]; + TM = iio[WS(vs, 2) + WS(rs, 2)]; + TS = TL + TM; + TN = KP866025403 * (TL - TM); + TT = FNMS(KP500000000, TS, TR); + TF = rio[WS(vs, 2)]; + TG = rio[WS(vs, 2) + WS(rs, 1)]; + TH = rio[WS(vs, 2) + WS(rs, 2)]; + TI = TG + TH; + TK = FNMS(KP500000000, TI, TF); + TQ = KP866025403 * (TH - TG); + } + } + rio[0] = T1 + T4; + iio[0] = Td + Te; + rio[WS(rs, 1)] = Tl + To; + iio[WS(rs, 1)] = Tx + Ty; + iio[WS(rs, 2)] = TR + TS; + rio[WS(rs, 2)] = TF + TI; + { + E Ta, Tg, T5, Tb; + Ta = T6 + T9; + Tg = Tc + Tf; + T5 = W[0]; + Tb = W[1]; + rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg); + iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg); + } + { + E TW, TY, TV, TX; + TW = TK - TN; + TY = TT - TQ; + TV = W[2]; + TX = W[3]; + rio[WS(vs, 2) + WS(rs, 2)] = FMA(TV, TW, TX * TY); + iio[WS(vs, 2) + WS(rs, 2)] = FNMS(TX, TW, TV * TY); + } + { + E TC, TE, TB, TD; + TC = Tq - Tt; + TE = Tz - Tw; + TB = W[2]; + TD = W[3]; + rio[WS(vs, 2) + WS(rs, 1)] = FMA(TB, TC, TD * TE); + iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TD, TC, TB * TE); + } + { + E Tu, TA, Tp, Tv; + Tu = Tq + Tt; + TA = Tw + Tz; + Tp = W[0]; + Tv = W[1]; + rio[WS(vs, 1) + WS(rs, 1)] = FMA(Tp, Tu, Tv * TA); + iio[WS(vs, 1) + WS(rs, 1)] = FNMS(Tv, Tu, Tp * TA); + } + { + E TO, TU, TJ, TP; + TO = TK + TN; + TU = TQ + TT; + TJ = W[0]; + TP = W[1]; + rio[WS(vs, 1) + WS(rs, 2)] = FMA(TJ, TO, TP * TU); + iio[WS(vs, 1) + WS(rs, 2)] = FNMS(TP, TO, TJ * TU); + } + { + E Ti, Tk, Th, Tj; + Ti = T6 - T9; + Tk = Tf - Tc; + Th = W[2]; + Tj = W[3]; + rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk); + iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 0, 3}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 3, "q1_3", twinstr, &GENUS, {30, 18, 18, 0}, 0, 0, 0 }; + +void X(codelet_q1_3) (planner *p) { + X(kdft_difsq_register) (p, q1_3, &desc); +} +#endif /* HAVE_FMA */