diff src/opus-1.3/celt/mdct.c @ 69:7aeed7906520

Add Opus sources and macOS builds
author Chris Cannam
date Wed, 23 Jan 2019 13:48:08 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/opus-1.3/celt/mdct.c	Wed Jan 23 13:48:08 2019 +0000
@@ -0,0 +1,343 @@
+/* Copyright (c) 2007-2008 CSIRO
+   Copyright (c) 2007-2008 Xiph.Org Foundation
+   Written by Jean-Marc Valin */
+/*
+   Redistribution and use in source and binary forms, with or without
+   modification, are permitted provided that the following conditions
+   are met:
+
+   - Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+
+   - Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+
+   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+/* This is a simple MDCT implementation that uses a N/4 complex FFT
+   to do most of the work. It should be relatively straightforward to
+   plug in pretty much and FFT here.
+
+   This replaces the Vorbis FFT (and uses the exact same API), which
+   was a bit too messy and that was ending up duplicating code
+   (might as well use the same FFT everywhere).
+
+   The algorithm is similar to (and inspired from) Fabrice Bellard's
+   MDCT implementation in FFMPEG, but has differences in signs, ordering
+   and scaling in many places.
+*/
+
+#ifndef SKIP_CONFIG_H
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+#endif
+
+#include "mdct.h"
+#include "kiss_fft.h"
+#include "_kiss_fft_guts.h"
+#include <math.h>
+#include "os_support.h"
+#include "mathops.h"
+#include "stack_alloc.h"
+
+#if defined(MIPSr1_ASM)
+#include "mips/mdct_mipsr1.h"
+#endif
+
+
+#ifdef CUSTOM_MODES
+
+int clt_mdct_init(mdct_lookup *l,int N, int maxshift, int arch)
+{
+   int i;
+   kiss_twiddle_scalar *trig;
+   int shift;
+   int N2=N>>1;
+   l->n = N;
+   l->maxshift = maxshift;
+   for (i=0;i<=maxshift;i++)
+   {
+      if (i==0)
+         l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0, arch);
+      else
+         l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0], arch);
+#ifndef ENABLE_TI_DSPLIB55
+      if (l->kfft[i]==NULL)
+         return 0;
+#endif
+   }
+   l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N-(N2>>maxshift))*sizeof(kiss_twiddle_scalar));
+   if (l->trig==NULL)
+     return 0;
+   for (shift=0;shift<=maxshift;shift++)
+   {
+      /* We have enough points that sine isn't necessary */
+#if defined(FIXED_POINT)
+#if 1
+      for (i=0;i<N2;i++)
+         trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2+16384),N));
+#else
+      for (i=0;i<N2;i++)
+         trig[i] = (kiss_twiddle_scalar)MAX32(-32767,MIN32(32767,floor(.5+32768*cos(2*M_PI*(i+.125)/N))));
+#endif
+#else
+      for (i=0;i<N2;i++)
+         trig[i] = (kiss_twiddle_scalar)cos(2*PI*(i+.125)/N);
+#endif
+      trig += N2;
+      N2 >>= 1;
+      N >>= 1;
+   }
+   return 1;
+}
+
+void clt_mdct_clear(mdct_lookup *l, int arch)
+{
+   int i;
+   for (i=0;i<=l->maxshift;i++)
+      opus_fft_free(l->kfft[i], arch);
+   opus_free((kiss_twiddle_scalar*)l->trig);
+}
+
+#endif /* CUSTOM_MODES */
+
+/* Forward MDCT trashes the input array */
+#ifndef OVERRIDE_clt_mdct_forward
+void clt_mdct_forward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
+      const opus_val16 *window, int overlap, int shift, int stride, int arch)
+{
+   int i;
+   int N, N2, N4;
+   VARDECL(kiss_fft_scalar, f);
+   VARDECL(kiss_fft_cpx, f2);
+   const kiss_fft_state *st = l->kfft[shift];
+   const kiss_twiddle_scalar *trig;
+   opus_val16 scale;
+#ifdef FIXED_POINT
+   /* Allows us to scale with MULT16_32_Q16(), which is faster than
+      MULT16_32_Q15() on ARM. */
+   int scale_shift = st->scale_shift-1;
+#endif
+   SAVE_STACK;
+   (void)arch;
+   scale = st->scale;
+
+   N = l->n;
+   trig = l->trig;
+   for (i=0;i<shift;i++)
+   {
+      N >>= 1;
+      trig += N;
+   }
+   N2 = N>>1;
+   N4 = N>>2;
+
+   ALLOC(f, N2, kiss_fft_scalar);
+   ALLOC(f2, N4, kiss_fft_cpx);
+
+   /* Consider the input to be composed of four blocks: [a, b, c, d] */
+   /* Window, shuffle, fold */
+   {
+      /* Temp pointers to make it really clear to the compiler what we're doing */
+      const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
+      const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
+      kiss_fft_scalar * OPUS_RESTRICT yp = f;
+      const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
+      const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
+      for(i=0;i<((overlap+3)>>2);i++)
+      {
+         /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
+         *yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
+         *yp++ = MULT16_32_Q15(*wp1, *xp1)    - MULT16_32_Q15(*wp2, xp2[-N2]);
+         xp1+=2;
+         xp2-=2;
+         wp1+=2;
+         wp2-=2;
+      }
+      wp1 = window;
+      wp2 = window+overlap-1;
+      for(;i<N4-((overlap+3)>>2);i++)
+      {
+         /* Real part arranged as a-bR, Imag part arranged as -c-dR */
+         *yp++ = *xp2;
+         *yp++ = *xp1;
+         xp1+=2;
+         xp2-=2;
+      }
+      for(;i<N4;i++)
+      {
+         /* Real part arranged as a-bR, Imag part arranged as -c-dR */
+         *yp++ =  -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
+         *yp++ = MULT16_32_Q15(*wp2, *xp1)     + MULT16_32_Q15(*wp1, xp2[N2]);
+         xp1+=2;
+         xp2-=2;
+         wp1+=2;
+         wp2-=2;
+      }
+   }
+   /* Pre-rotation */
+   {
+      kiss_fft_scalar * OPUS_RESTRICT yp = f;
+      const kiss_twiddle_scalar *t = &trig[0];
+      for(i=0;i<N4;i++)
+      {
+         kiss_fft_cpx yc;
+         kiss_twiddle_scalar t0, t1;
+         kiss_fft_scalar re, im, yr, yi;
+         t0 = t[i];
+         t1 = t[N4+i];
+         re = *yp++;
+         im = *yp++;
+         yr = S_MUL(re,t0)  -  S_MUL(im,t1);
+         yi = S_MUL(im,t0)  +  S_MUL(re,t1);
+         yc.r = yr;
+         yc.i = yi;
+         yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift);
+         yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift);
+         f2[st->bitrev[i]] = yc;
+      }
+   }
+
+   /* N/4 complex FFT, does not downscale anymore */
+   opus_fft_impl(st, f2);
+
+   /* Post-rotate */
+   {
+      /* Temp pointers to make it really clear to the compiler what we're doing */
+      const kiss_fft_cpx * OPUS_RESTRICT fp = f2;
+      kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
+      kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
+      const kiss_twiddle_scalar *t = &trig[0];
+      /* Temp pointers to make it really clear to the compiler what we're doing */
+      for(i=0;i<N4;i++)
+      {
+         kiss_fft_scalar yr, yi;
+         yr = S_MUL(fp->i,t[N4+i]) - S_MUL(fp->r,t[i]);
+         yi = S_MUL(fp->r,t[N4+i]) + S_MUL(fp->i,t[i]);
+         *yp1 = yr;
+         *yp2 = yi;
+         fp++;
+         yp1 += 2*stride;
+         yp2 -= 2*stride;
+      }
+   }
+   RESTORE_STACK;
+}
+#endif /* OVERRIDE_clt_mdct_forward */
+
+#ifndef OVERRIDE_clt_mdct_backward
+void clt_mdct_backward_c(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
+      const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride, int arch)
+{
+   int i;
+   int N, N2, N4;
+   const kiss_twiddle_scalar *trig;
+   (void) arch;
+
+   N = l->n;
+   trig = l->trig;
+   for (i=0;i<shift;i++)
+   {
+      N >>= 1;
+      trig += N;
+   }
+   N2 = N>>1;
+   N4 = N>>2;
+
+   /* Pre-rotate */
+   {
+      /* Temp pointers to make it really clear to the compiler what we're doing */
+      const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
+      const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
+      kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1);
+      const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0];
+      const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev;
+      for(i=0;i<N4;i++)
+      {
+         int rev;
+         kiss_fft_scalar yr, yi;
+         rev = *bitrev++;
+         yr = ADD32_ovflw(S_MUL(*xp2, t[i]), S_MUL(*xp1, t[N4+i]));
+         yi = SUB32_ovflw(S_MUL(*xp1, t[i]), S_MUL(*xp2, t[N4+i]));
+         /* We swap real and imag because we use an FFT instead of an IFFT. */
+         yp[2*rev+1] = yr;
+         yp[2*rev] = yi;
+         /* Storing the pre-rotation directly in the bitrev order. */
+         xp1+=2*stride;
+         xp2-=2*stride;
+      }
+   }
+
+   opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1)));
+
+   /* Post-rotate and de-shuffle from both ends of the buffer at once to make
+      it in-place. */
+   {
+      kiss_fft_scalar * yp0 = out+(overlap>>1);
+      kiss_fft_scalar * yp1 = out+(overlap>>1)+N2-2;
+      const kiss_twiddle_scalar *t = &trig[0];
+      /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the
+         middle pair will be computed twice. */
+      for(i=0;i<(N4+1)>>1;i++)
+      {
+         kiss_fft_scalar re, im, yr, yi;
+         kiss_twiddle_scalar t0, t1;
+         /* We swap real and imag because we're using an FFT instead of an IFFT. */
+         re = yp0[1];
+         im = yp0[0];
+         t0 = t[i];
+         t1 = t[N4+i];
+         /* We'd scale up by 2 here, but instead it's done when mixing the windows */
+         yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
+         yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
+         /* We swap real and imag because we're using an FFT instead of an IFFT. */
+         re = yp1[1];
+         im = yp1[0];
+         yp0[0] = yr;
+         yp1[1] = yi;
+
+         t0 = t[(N4-i-1)];
+         t1 = t[(N2-i-1)];
+         /* We'd scale up by 2 here, but instead it's done when mixing the windows */
+         yr = ADD32_ovflw(S_MUL(re,t0), S_MUL(im,t1));
+         yi = SUB32_ovflw(S_MUL(re,t1), S_MUL(im,t0));
+         yp1[0] = yr;
+         yp0[1] = yi;
+         yp0 += 2;
+         yp1 -= 2;
+      }
+   }
+
+   /* Mirror on both sides for TDAC */
+   {
+      kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1;
+      kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
+      const opus_val16 * OPUS_RESTRICT wp1 = window;
+      const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
+
+      for(i = 0; i < overlap/2; i++)
+      {
+         kiss_fft_scalar x1, x2;
+         x1 = *xp1;
+         x2 = *yp1;
+         *yp1++ = SUB32_ovflw(MULT16_32_Q15(*wp2, x2), MULT16_32_Q15(*wp1, x1));
+         *xp1-- = ADD32_ovflw(MULT16_32_Q15(*wp1, x2), MULT16_32_Q15(*wp2, x1));
+         wp1++;
+         wp2--;
+      }
+   }
+}
+#endif /* OVERRIDE_clt_mdct_backward */