diff src/fftw-3.3.5/dft/indirect.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.5/dft/indirect.c	Tue Oct 18 13:40:26 2016 +0100
@@ -0,0 +1,240 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+
+/* solvers/plans for vectors of small DFT's that cannot be done
+   in-place directly.  Use a rank-0 plan to rearrange the data
+   before or after the transform.  Can also change an out-of-place
+   plan into a copy + in-place (where the in-place transform
+   is e.g. unit stride). */
+
+/* FIXME: merge with rank-geq2.c(?), since this is just a special case
+   of a rank split where the first/second transform has rank 0. */
+
+#include "dft.h"
+
+typedef problem *(*mkcld_t) (const problem_dft *p);
+
+typedef struct {
+     dftapply apply;
+     problem *(*mkcld)(const problem_dft *p);
+     const char *nam;
+} ndrct_adt;
+
+typedef struct {
+     solver super;
+     const ndrct_adt *adt;
+} S;
+
+typedef struct {
+     plan_dft super;
+     plan *cldcpy, *cld;
+     const S *slv;
+} P;
+
+/*-----------------------------------------------------------------------*/
+/* first rearrange, then transform */
+static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+
+     {
+          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
+          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
+     }
+     {
+          plan_dft *cld = (plan_dft *) ego->cld;
+          cld->apply(ego->cld, ro, io, ro, io);
+     }
+}
+
+static problem *mkcld_before(const problem_dft *p)
+{
+     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
+			       X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
+			       p->ro, p->io, p->ro, p->io);
+}
+
+static const ndrct_adt adt_before =
+{
+     apply_before, mkcld_before, "dft-indirect-before"
+};
+
+/*-----------------------------------------------------------------------*/
+/* first transform, then rearrange */
+
+static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
+{
+     const P *ego = (const P *) ego_;
+
+     {
+          plan_dft *cld = (plan_dft *) ego->cld;
+          cld->apply(ego->cld, ri, ii, ri, ii);
+     }
+     {
+          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
+          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
+     }
+}
+
+static problem *mkcld_after(const problem_dft *p)
+{
+     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
+			       X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
+			       p->ri, p->ii, p->ri, p->ii);
+}
+
+static const ndrct_adt adt_after =
+{
+     apply_after, mkcld_after, "dft-indirect-after"
+};
+
+/*-----------------------------------------------------------------------*/
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cld);
+     X(plan_destroy_internal)(ego->cldcpy);
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cldcpy, wakefulness);
+     X(plan_awake)(ego->cld, wakefulness);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     const S *s = ego->slv;
+     p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
+}
+
+static int applicable0(const solver *ego_, const problem *p_,
+		       const planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     const problem_dft *p = (const problem_dft *) p_;
+     return (1
+	     && FINITE_RNK(p->vecsz->rnk)
+
+	     /* problem must be a nontrivial transform, not just a copy */
+	     && p->sz->rnk > 0
+
+	     && (0
+
+		 /* problem must be in-place & require some
+		    rearrangement of the data; to prevent
+		    infinite loops with indirect-transpose, we
+		    further require that at least some transform
+		    strides must decrease */
+		 || (p->ri == p->ro
+		     && !X(tensor_inplace_strides2)(p->sz, p->vecsz)
+		     && X(tensor_strides_decrease)(
+			  p->sz, p->vecsz,
+			  ego->adt->apply == apply_after ? 
+			  INPLACE_IS : INPLACE_OS))
+
+		 /* or problem must be out of place, transforming
+		    from stride 1/2 to bigger stride, for apply_after */
+		 || (p->ri != p->ro && ego->adt->apply == apply_after
+		     && !NO_DESTROY_INPUTP(plnr)
+		     && X(tensor_min_istride)(p->sz) <= 2
+		     && X(tensor_min_ostride)(p->sz) > 2)
+			  
+		 /* or problem must be out of place, transforming
+		    to stride 1/2 from bigger stride, for apply_before */
+		 || (p->ri != p->ro && ego->adt->apply == apply_before
+		     && X(tensor_min_ostride)(p->sz) <= 2
+		     && X(tensor_min_istride)(p->sz) > 2)
+		  )
+	  );
+}
+
+static int applicable(const solver *ego_, const problem *p_,
+		      const planner *plnr)
+{
+     if (!applicable0(ego_, p_, plnr)) return 0;
+     {
+          const problem_dft *p = (const problem_dft *) p_;
+	  if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
+     }
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const problem_dft *p = (const problem_dft *) p_;
+     const S *ego = (const S *) ego_;
+     P *pln;
+     plan *cld = 0, *cldcpy = 0;
+
+     static const plan_adt padt = {
+	  X(dft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego_, p_, plnr))
+          return (plan *) 0;
+
+     cldcpy =
+	  X(mkplan_d)(plnr, 
+		      X(mkproblem_dft_d)(X(mktensor_0d)(),
+					 X(tensor_append)(p->vecsz, p->sz),
+					 p->ri, p->ii, p->ro, p->io));
+
+     if (!cldcpy) goto nada;
+
+     cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
+     if (!cld) goto nada;
+
+     pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
+     pln->cld = cld;
+     pln->cldcpy = cldcpy;
+     pln->slv = ego;
+     X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
+
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cld);
+     X(plan_destroy_internal)(cldcpy);
+     return (plan *)0;
+}
+
+static solver *mksolver(const ndrct_adt *adt)
+{
+     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->adt = adt;
+     return &(slv->super);
+}
+
+void X(dft_indirect_register)(planner *p)
+{
+     unsigned i;
+     static const ndrct_adt *const adts[] = {
+	  &adt_before, &adt_after
+     };
+
+     for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
+          REGISTER_SOLVER(p, mksolver(adts[i]));
+}