Mercurial > hg > sv-dependency-builds
diff osx/include/capnp/orphan.h @ 49:3ab5a40c4e3b
Add Capnp and KJ builds for OSX
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 25 Oct 2016 14:48:23 +0100 |
parents | |
children | 0994c39f1e94 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/osx/include/capnp/orphan.h Tue Oct 25 14:48:23 2016 +0100 @@ -0,0 +1,440 @@ +// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors +// Licensed under the MIT License: +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. + +#ifndef CAPNP_ORPHAN_H_ +#define CAPNP_ORPHAN_H_ + +#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS) +#pragma GCC system_header +#endif + +#include "layout.h" + +namespace capnp { + +class StructSchema; +class ListSchema; +struct DynamicStruct; +struct DynamicList; +namespace _ { struct OrphanageInternal; } + +template <typename T> +class Orphan { + // Represents an object which is allocated within some message builder but has no pointers + // pointing at it. An Orphan can later be "adopted" by some other object as one of that object's + // fields, without having to copy the orphan. For a field `foo` of pointer type, the generated + // code will define builder methods `void adoptFoo(Orphan<T>)` and `Orphan<T> disownFoo()`. + // Orphans can also be created independently of any parent using an Orphanage. + // + // `Orphan<T>` can be moved but not copied, like `Own<T>`, so that it is impossible for one + // orphan to be adopted multiple times. If an orphan is destroyed without being adopted, its + // contents are zero'd out (and possibly reused, if we ever implement the ability to reuse space + // in a message arena). + +public: + Orphan() = default; + KJ_DISALLOW_COPY(Orphan); + Orphan(Orphan&&) = default; + Orphan& operator=(Orphan&&) = default; + inline Orphan(_::OrphanBuilder&& builder): builder(kj::mv(builder)) {} + + inline BuilderFor<T> get(); + // Get the underlying builder. If the orphan is null, this will allocate and return a default + // object rather than crash. This is done for security -- otherwise, you might enable a DoS + // attack any time you disown a field and fail to check if it is null. In the case of structs, + // this means that the orphan is no longer null after get() returns. In the case of lists, + // no actual object is allocated since a simple empty ListBuilder can be returned. + + inline ReaderFor<T> getReader() const; + + inline bool operator==(decltype(nullptr)) const { return builder == nullptr; } + inline bool operator!=(decltype(nullptr)) const { return builder != nullptr; } + + inline void truncate(uint size); + // Resize an object (which must be a list or a blob) to the given size. + // + // If the new size is less than the original, the remaining elements will be discarded. The + // list is never moved in this case. If the list happens to be located at the end of its segment + // (which is always true if the list was the last thing allocated), the removed memory will be + // reclaimed (reducing the messag size), otherwise it is simply zeroed. The reclaiming behavior + // is particularly useful for allocating buffer space when you aren't sure how much space you + // actually need: you can pre-allocate, say, a 4k byte array, read() from a file into it, and + // then truncate it back to the amount of space actually used. + // + // If the new size is greater than the original, the list is extended with default values. If + // the list is the last object in its segment *and* there is enough space left in the segment to + // extend it to cover the new values, then the list is extended in-place. Otherwise, it must be + // moved to a new location, leaving a zero'd hole in the previous space that won't be filled. + // This copy is shallow; sub-objects will simply be reparented, not copied. + // + // Any existing readers or builders pointing at the object are invalidated by this call (even if + // it doesn't move). You must call `get()` or `getReader()` again to get the new, valid pointer. + +private: + _::OrphanBuilder builder; + + template <typename, Kind> + friend struct _::PointerHelpers; + template <typename, Kind> + friend struct List; + template <typename U> + friend class Orphan; + friend class Orphanage; + friend class MessageBuilder; +}; + +class Orphanage: private kj::DisallowConstCopy { + // Use to directly allocate Orphan objects, without having a parent object allocate and then + // disown the object. + +public: + inline Orphanage(): arena(nullptr) {} + + template <typename BuilderType> + static Orphanage getForMessageContaining(BuilderType builder); + // Construct an Orphanage that allocates within the message containing the given Builder. This + // allows the constructed Orphans to be adopted by objects within said message. + // + // This constructor takes the builder rather than having the builder have a getOrphanage() method + // because this is an advanced feature and we don't want to pollute the builder APIs with it. + // + // Note that if you have a direct pointer to the `MessageBuilder`, you can simply call its + // `getOrphanage()` method. + + template <typename RootType> + Orphan<RootType> newOrphan() const; + // Allocate a new orphaned struct. + + template <typename RootType> + Orphan<RootType> newOrphan(uint size) const; + // Allocate a new orphaned list or blob. + + Orphan<DynamicStruct> newOrphan(StructSchema schema) const; + // Dynamically create an orphan struct with the given schema. You must + // #include <capnp/dynamic.h> to use this. + + Orphan<DynamicList> newOrphan(ListSchema schema, uint size) const; + // Dynamically create an orphan list with the given schema. You must #include <capnp/dynamic.h> + // to use this. + + template <typename Reader> + Orphan<FromReader<Reader>> newOrphanCopy(Reader copyFrom) const; + // Allocate a new orphaned object (struct, list, or blob) and initialize it as a copy of the + // given object. + + template <typename T> + Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<T> lists) const; + template <typename T> + Orphan<List<ListElementType<FromReader<T>>>> newOrphanConcat(kj::ArrayPtr<const T> lists) const; + // Given an array of List readers, copy and concatenate the lists, creating a new Orphan. + // + // Note that compared to allocating the list yourself and using `setWithCaveats()` to set each + // item, this method avoids the "caveats": the new list will be allocated with the element size + // being the maximum of that from all the input lists. This is particularly important when + // concatenating struct lists: if the lists were created using a newer version of the protocol + // in which some new fields had been added to the struct, using `setWithCaveats()` would + // truncate off those new fields. + + Orphan<Data> referenceExternalData(Data::Reader data) const; + // Creates an Orphan<Data> that points at an existing region of memory (e.g. from another message) + // without copying it. There are some SEVERE restrictions on how this can be used: + // - The memory must remain valid until the `MessageBuilder` is destroyed (even if the orphan is + // abandoned). + // - Because the data is const, you will not be allowed to obtain a `Data::Builder` + // for this blob. Any call which would return such a builder will throw an exception. You + // can, however, obtain a Reader, e.g. via orphan.getReader() or from a parent Reader (once + // the orphan is adopted). It is your responsibility to make sure your code can deal with + // these problems when using this optimization; if you can't, allocate a copy instead. + // - `data.begin()` must be aligned to a machine word boundary (32-bit or 64-bit depending on + // the CPU). Any pointer returned by malloc() as well as any data blob obtained from another + // Cap'n Proto message satisfies this. + // - If `data.size()` is not a multiple of 8, extra bytes past data.end() up until the next 8-byte + // boundary will be visible in the raw message when it is written out. Thus, there must be no + // secrets in these bytes. Data blobs obtained from other Cap'n Proto messages should be safe + // as these bytes should be zero (unless the sender had the same problem). + // + // The array will actually become one of the message's segments. The data can thus be adopted + // into the message tree without copying it. This is particularly useful when referencing very + // large blobs, such as whole mmap'd files. + +private: + _::BuilderArena* arena; + _::CapTableBuilder* capTable; + + inline explicit Orphanage(_::BuilderArena* arena, _::CapTableBuilder* capTable) + : arena(arena), capTable(capTable) {} + + template <typename T, Kind = CAPNP_KIND(T)> + struct GetInnerBuilder; + template <typename T, Kind = CAPNP_KIND(T)> + struct GetInnerReader; + template <typename T> + struct NewOrphanListImpl; + + friend class MessageBuilder; + friend struct _::OrphanageInternal; +}; + +// ======================================================================================= +// Inline implementation details. + +namespace _ { // private + +template <typename T, Kind = CAPNP_KIND(T)> +struct OrphanGetImpl; + +template <typename T> +struct OrphanGetImpl<T, Kind::PRIMITIVE> { + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, _::elementSizeForType<T>()); + } +}; + +template <typename T> +struct OrphanGetImpl<T, Kind::STRUCT> { + static inline typename T::Builder apply(_::OrphanBuilder& builder) { + return typename T::Builder(builder.asStruct(_::structSize<T>())); + } + static inline typename T::Reader applyReader(const _::OrphanBuilder& builder) { + return typename T::Reader(builder.asStructReader(_::structSize<T>())); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, _::structSize<T>()); + } +}; + +#if !CAPNP_LITE +template <typename T> +struct OrphanGetImpl<T, Kind::INTERFACE> { + static inline typename T::Client apply(_::OrphanBuilder& builder) { + return typename T::Client(builder.asCapability()); + } + static inline typename T::Client applyReader(const _::OrphanBuilder& builder) { + return typename T::Client(builder.asCapability()); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, ElementSize::POINTER); + } +}; +#endif // !CAPNP_LITE + +template <typename T, Kind k> +struct OrphanGetImpl<List<T, k>, Kind::LIST> { + static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) { + return typename List<T>::Builder(builder.asList(_::ElementSizeForType<T>::value)); + } + static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) { + return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value)); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, ElementSize::POINTER); + } +}; + +template <typename T> +struct OrphanGetImpl<List<T, Kind::STRUCT>, Kind::LIST> { + static inline typename List<T>::Builder apply(_::OrphanBuilder& builder) { + return typename List<T>::Builder(builder.asStructList(_::structSize<T>())); + } + static inline typename List<T>::Reader applyReader(const _::OrphanBuilder& builder) { + return typename List<T>::Reader(builder.asListReader(_::ElementSizeForType<T>::value)); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, ElementSize::POINTER); + } +}; + +template <> +struct OrphanGetImpl<Text, Kind::BLOB> { + static inline Text::Builder apply(_::OrphanBuilder& builder) { + return Text::Builder(builder.asText()); + } + static inline Text::Reader applyReader(const _::OrphanBuilder& builder) { + return Text::Reader(builder.asTextReader()); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, ElementSize::POINTER); + } +}; + +template <> +struct OrphanGetImpl<Data, Kind::BLOB> { + static inline Data::Builder apply(_::OrphanBuilder& builder) { + return Data::Builder(builder.asData()); + } + static inline Data::Reader applyReader(const _::OrphanBuilder& builder) { + return Data::Reader(builder.asDataReader()); + } + static inline void truncateListOf(_::OrphanBuilder& builder, ElementCount size) { + builder.truncate(size, ElementSize::POINTER); + } +}; + +struct OrphanageInternal { + static inline _::BuilderArena* getArena(Orphanage orphanage) { return orphanage.arena; } + static inline _::CapTableBuilder* getCapTable(Orphanage orphanage) { return orphanage.capTable; } +}; + +} // namespace _ (private) + +template <typename T> +inline BuilderFor<T> Orphan<T>::get() { + return _::OrphanGetImpl<T>::apply(builder); +} + +template <typename T> +inline ReaderFor<T> Orphan<T>::getReader() const { + return _::OrphanGetImpl<T>::applyReader(builder); +} + +template <typename T> +inline void Orphan<T>::truncate(uint size) { + _::OrphanGetImpl<ListElementType<T>>::truncateListOf(builder, size * ELEMENTS); +} + +template <> +inline void Orphan<Text>::truncate(uint size) { + builder.truncateText(size * ELEMENTS); +} + +template <> +inline void Orphan<Data>::truncate(uint size) { + builder.truncate(size * ELEMENTS, ElementSize::BYTE); +} + +template <typename T> +struct Orphanage::GetInnerBuilder<T, Kind::STRUCT> { + static inline _::StructBuilder apply(typename T::Builder& t) { + return t._builder; + } +}; + +template <typename T> +struct Orphanage::GetInnerBuilder<T, Kind::LIST> { + static inline _::ListBuilder apply(typename T::Builder& t) { + return t.builder; + } +}; + +template <typename BuilderType> +Orphanage Orphanage::getForMessageContaining(BuilderType builder) { + auto inner = GetInnerBuilder<FromBuilder<BuilderType>>::apply(builder); + return Orphanage(inner.getArena(), inner.getCapTable()); +} + +template <typename RootType> +Orphan<RootType> Orphanage::newOrphan() const { + return Orphan<RootType>(_::OrphanBuilder::initStruct(arena, capTable, _::structSize<RootType>())); +} + +template <typename T, Kind k> +struct Orphanage::NewOrphanListImpl<List<T, k>> { + static inline _::OrphanBuilder apply( + _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { + return _::OrphanBuilder::initList( + arena, capTable, size * ELEMENTS, _::ElementSizeForType<T>::value); + } +}; + +template <typename T> +struct Orphanage::NewOrphanListImpl<List<T, Kind::STRUCT>> { + static inline _::OrphanBuilder apply( + _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { + return _::OrphanBuilder::initStructList( + arena, capTable, size * ELEMENTS, _::structSize<T>()); + } +}; + +template <> +struct Orphanage::NewOrphanListImpl<Text> { + static inline _::OrphanBuilder apply( + _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { + return _::OrphanBuilder::initText(arena, capTable, size * BYTES); + } +}; + +template <> +struct Orphanage::NewOrphanListImpl<Data> { + static inline _::OrphanBuilder apply( + _::BuilderArena* arena, _::CapTableBuilder* capTable, uint size) { + return _::OrphanBuilder::initData(arena, capTable, size * BYTES); + } +}; + +template <typename RootType> +Orphan<RootType> Orphanage::newOrphan(uint size) const { + return Orphan<RootType>(NewOrphanListImpl<RootType>::apply(arena, capTable, size)); +} + +template <typename T> +struct Orphanage::GetInnerReader<T, Kind::STRUCT> { + static inline _::StructReader apply(const typename T::Reader& t) { + return t._reader; + } +}; + +template <typename T> +struct Orphanage::GetInnerReader<T, Kind::LIST> { + static inline _::ListReader apply(const typename T::Reader& t) { + return t.reader; + } +}; + +template <typename T> +struct Orphanage::GetInnerReader<T, Kind::BLOB> { + static inline const typename T::Reader& apply(const typename T::Reader& t) { + return t; + } +}; + +template <typename Reader> +inline Orphan<FromReader<Reader>> Orphanage::newOrphanCopy(Reader copyFrom) const { + return Orphan<FromReader<Reader>>(_::OrphanBuilder::copy( + arena, capTable, GetInnerReader<FromReader<Reader>>::apply(copyFrom))); +} + +template <typename T> +inline Orphan<List<ListElementType<FromReader<T>>>> +Orphanage::newOrphanConcat(kj::ArrayPtr<T> lists) const { + return newOrphanConcat(kj::implicitCast<kj::ArrayPtr<const T>>(lists)); +} +template <typename T> +inline Orphan<List<ListElementType<FromReader<T>>>> +Orphanage::newOrphanConcat(kj::ArrayPtr<const T> lists) const { + // Optimization / simplification: Rely on List<T>::Reader containing nothing except a + // _::ListReader. + static_assert(sizeof(T) == sizeof(_::ListReader), "lists are not bare readers?"); + kj::ArrayPtr<const _::ListReader> raw( + reinterpret_cast<const _::ListReader*>(lists.begin()), lists.size()); + typedef ListElementType<FromReader<T>> Element; + return Orphan<List<Element>>( + _::OrphanBuilder::concat(arena, capTable, + _::elementSizeForType<Element>(), + _::minStructSizeForElement<Element>(), raw)); +} + +inline Orphan<Data> Orphanage::referenceExternalData(Data::Reader data) const { + return Orphan<Data>(_::OrphanBuilder::referenceExternalData(arena, data)); +} + +} // namespace capnp + +#endif // CAPNP_ORPHAN_H_