Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/vrank3-transpose.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/vrank3-transpose.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,777 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +/* rank-0, vector-rank-3, non-square in-place transposition + (see rank0.c for square transposition) */ + +#include "rdft.h" + +#ifdef HAVE_STRING_H +#include <string.h> /* for memcpy() */ +#endif + +struct P_s; + +typedef struct { + rdftapply apply; + int (*applicable)(const problem_rdft *p, planner *plnr, + int dim0, int dim1, int dim2, INT *nbuf); + int (*mkcldrn)(const problem_rdft *p, planner *plnr, struct P_s *ego); + const char *nam; +} transpose_adt; + +typedef struct { + solver super; + const transpose_adt *adt; +} S; + +typedef struct P_s { + plan_rdft super; + INT n, m, vl; /* transpose n x m matrix of vl-tuples */ + INT nbuf; /* buffer size */ + INT nd, md, d; /* transpose-gcd params */ + INT nc, mc; /* transpose-cut params */ + plan *cld1, *cld2, *cld3; /* children, null if unused */ + const S *slv; +} P; + + +/*************************************************************************/ +/* some utilities for the solvers */ + +static INT gcd(INT a, INT b) +{ + INT r; + do { + r = a % b; + a = b; + b = r; + } while (r != 0); + + return a; +} + +/* whether we can transpose with one of our routines expecting + contiguous Ntuples */ +static int Ntuple_transposable(const iodim *a, const iodim *b, INT vl, INT vs) +{ + return (vs == 1 && b->is == vl && a->os == vl && + ((a->n == b->n && a->is == b->os + && a->is >= b->n && a->is % vl == 0) + || (a->is == b->n * vl && b->os == a->n * vl))); +} + +/* check whether a and b correspond to the first and second dimensions + of a transpose of tuples with vector length = vl, stride = vs. */ +static int transposable(const iodim *a, const iodim *b, INT vl, INT vs) +{ + return ((a->n == b->n && a->os == b->is && a->is == b->os) + || Ntuple_transposable(a, b, vl, vs)); +} + +static int pickdim(const tensor *s, int *pdim0, int *pdim1, int *pdim2) +{ + int dim0, dim1; + + for (dim0 = 0; dim0 < s->rnk; ++dim0) + for (dim1 = 0; dim1 < s->rnk; ++dim1) { + int dim2 = 3 - dim0 - dim1; + if (dim0 == dim1) continue; + if ((s->rnk == 2 || s->dims[dim2].is == s->dims[dim2].os) + && transposable(s->dims + dim0, s->dims + dim1, + s->rnk == 2 ? (INT)1 : s->dims[dim2].n, + s->rnk == 2 ? (INT)1 : s->dims[dim2].is)) { + *pdim0 = dim0; + *pdim1 = dim1; + *pdim2 = dim2; + return 1; + } + } + return 0; +} + +#define MINBUFDIV 9 /* min factor by which buffer is smaller than data */ +#define MAXBUF 65536 /* maximum non-ugly buffer */ + +/* generic applicability function */ +static int applicable(const solver *ego_, const problem *p_, planner *plnr, + int *dim0, int *dim1, int *dim2, INT *nbuf) +{ + const S *ego = (const S *) ego_; + const problem_rdft *p = (const problem_rdft *) p_; + + return (1 + && p->I == p->O + && p->sz->rnk == 0 + && (p->vecsz->rnk == 2 || p->vecsz->rnk == 3) + + && pickdim(p->vecsz, dim0, dim1, dim2) + + /* UGLY if vecloop in wrong order for locality */ + && (!NO_UGLYP(plnr) || + p->vecsz->rnk == 2 || + X(iabs)(p->vecsz->dims[*dim2].is) + < X(imax)(X(iabs)(p->vecsz->dims[*dim0].is), + X(iabs)(p->vecsz->dims[*dim0].os))) + + /* SLOW if non-square */ + && (!NO_SLOWP(plnr) + || p->vecsz->dims[*dim0].n == p->vecsz->dims[*dim1].n) + + && ego->adt->applicable(p, plnr, *dim0,*dim1,*dim2,nbuf) + + /* buffers too big are UGLY */ + && ((!NO_UGLYP(plnr) && !CONSERVE_MEMORYP(plnr)) + || *nbuf <= MAXBUF + || *nbuf * MINBUFDIV <= X(tensor_sz)(p->vecsz)) + ); +} + +static void get_transpose_vec(const problem_rdft *p, int dim2, INT *vl,INT *vs) +{ + if (p->vecsz->rnk == 2) { + *vl = 1; *vs = 1; + } + else { + *vl = p->vecsz->dims[dim2].n; + *vs = p->vecsz->dims[dim2].is; /* == os */ + } +} + +/*************************************************************************/ +/* Cache-oblivious in-place transpose of non-square matrices, based + on transposes of blocks given by the gcd of the dimensions. + + This algorithm is related to algorithm V5 from Murray Dow, + "Transposing a matrix on a vector computer," Parallel Computing 21 + (12), 1997-2005 (1995), with the modification that we use + cache-oblivious recursive transpose subroutines (and we derived + it independently). + + For a p x q matrix, this requires scratch space equal to the size + of the matrix divided by gcd(p,q). Alternatively, see also the + "cut" algorithm below, if |p-q| * gcd(p,q) < max(p,q). */ + +static void apply_gcd(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT n = ego->nd, m = ego->md, d = ego->d; + INT vl = ego->vl; + R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS); + INT i, num_el = n*m*d*vl; + + A(ego->n == n * d && ego->m == m * d); + UNUSED(O); + + /* Transpose the matrix I in-place, where I is an (n*d) x (m*d) matrix + of vl-tuples and buf contains n*m*d*vl elements. + + In general, to transpose a p x q matrix, you should call this + routine with d = gcd(p, q), n = p/d, and m = q/d. */ + + A(n > 0 && m > 0 && vl > 0); + A(d > 1); + + /* treat as (d x n) x (d' x m) matrix. (d' = d) */ + + /* First, transpose d x (n x d') x m to d x (d' x n) x m, + using the buf matrix. This consists of d transposes + of contiguous n x d' matrices of m-tuples. */ + if (n > 1) { + rdftapply cldapply = ((plan_rdft *) ego->cld1)->apply; + for (i = 0; i < d; ++i) { + cldapply(ego->cld1, I + i*num_el, buf); + memcpy(I + i*num_el, buf, num_el*sizeof(R)); + } + } + + /* Now, transpose (d x d') x (n x m) to (d' x d) x (n x m), which + is a square in-place transpose of n*m-tuples: */ + { + rdftapply cldapply = ((plan_rdft *) ego->cld2)->apply; + cldapply(ego->cld2, I, I); + } + + /* Finally, transpose d' x ((d x n) x m) to d' x (m x (d x n)), + using the buf matrix. This consists of d' transposes + of contiguous d*n x m matrices. */ + if (m > 1) { + rdftapply cldapply = ((plan_rdft *) ego->cld3)->apply; + for (i = 0; i < d; ++i) { + cldapply(ego->cld3, I + i*num_el, buf); + memcpy(I + i*num_el, buf, num_el*sizeof(R)); + } + } + + X(ifree)(buf); +} + +static int applicable_gcd(const problem_rdft *p, planner *plnr, + int dim0, int dim1, int dim2, INT *nbuf) +{ + INT n = p->vecsz->dims[dim0].n; + INT m = p->vecsz->dims[dim1].n; + INT d, vl, vs; + get_transpose_vec(p, dim2, &vl, &vs); + d = gcd(n, m); + *nbuf = n * (m / d) * vl; + return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts */ + && n != m + && d > 1 + && Ntuple_transposable(p->vecsz->dims + dim0, + p->vecsz->dims + dim1, + vl, vs)); +} + +static int mkcldrn_gcd(const problem_rdft *p, planner *plnr, P *ego) +{ + INT n = ego->nd, m = ego->md, d = ego->d; + INT vl = ego->vl; + R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS); + INT num_el = n*m*d*vl; + + if (n > 1) { + ego->cld1 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(n, d*m*vl, m*vl, + d, m*vl, n*m*vl, + m*vl, 1, 1), + TAINT(p->I, num_el), buf)); + if (!ego->cld1) + goto nada; + X(ops_madd)(d, &ego->cld1->ops, &ego->super.super.ops, + &ego->super.super.ops); + ego->super.super.ops.other += num_el * d * 2; + } + + ego->cld2 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(d, d*n*m*vl, n*m*vl, + d, n*m*vl, d*n*m*vl, + n*m*vl, 1, 1), + p->I, p->I)); + if (!ego->cld2) + goto nada; + X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops); + + if (m > 1) { + ego->cld3 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(d*n, m*vl, vl, + m, vl, d*n*vl, + vl, 1, 1), + TAINT(p->I, num_el), buf)); + if (!ego->cld3) + goto nada; + X(ops_madd2)(d, &ego->cld3->ops, &ego->super.super.ops); + ego->super.super.ops.other += num_el * d * 2; + } + + X(ifree)(buf); + return 1; + + nada: + X(ifree)(buf); + return 0; +} + +static const transpose_adt adt_gcd = +{ + apply_gcd, applicable_gcd, mkcldrn_gcd, + "rdft-transpose-gcd" +}; + +/*************************************************************************/ +/* Cache-oblivious in-place transpose of non-square n x m matrices, + based on transposing a sub-matrix first and then transposing the + remainder(s) with the help of a buffer. See also transpose-gcd, + above, if gcd(n,m) is large. + + This algorithm is related to algorithm V3 from Murray Dow, + "Transposing a matrix on a vector computer," Parallel Computing 21 + (12), 1997-2005 (1995), with the modifications that we use + cache-oblivious recursive transpose subroutines and we have the + generalization for large |n-m| below. + + The best case, and the one described by Dow, is for |n-m| small, in + which case we transpose a square sub-matrix of size min(n,m), + handling the remainder via a buffer. This requires scratch space + equal to the size of the matrix times |n-m| / max(n,m). + + As a generalization when |n-m| is not small, we also support cutting + *both* dimensions to an nc x mc matrix which is *not* necessarily + square, but has a large gcd (and can therefore use transpose-gcd). +*/ + +static void apply_cut(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT n = ego->n, m = ego->m, nc = ego->nc, mc = ego->mc, vl = ego->vl; + INT i; + R *buf1 = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS); + UNUSED(O); + + if (m > mc) { + ((plan_rdft *) ego->cld1)->apply(ego->cld1, I + mc*vl, buf1); + for (i = 0; i < nc; ++i) + memmove(I + (mc*vl) * i, I + (m*vl) * i, sizeof(R) * (mc*vl)); + } + + ((plan_rdft *) ego->cld2)->apply(ego->cld2, I, I); /* nc x mc transpose */ + + if (n > nc) { + R *buf2 = buf1 + (m-mc)*(nc*vl); /* FIXME: force better alignment? */ + memcpy(buf2, I + nc*(m*vl), (n-nc)*(m*vl)*sizeof(R)); + for (i = mc-1; i >= 0; --i) + memmove(I + (n*vl) * i, I + (nc*vl) * i, sizeof(R) * (n*vl)); + ((plan_rdft *) ego->cld3)->apply(ego->cld3, buf2, I + nc*vl); + } + + if (m > mc) { + if (n > nc) + for (i = mc; i < m; ++i) + memcpy(I + i*(n*vl), buf1 + (i-mc)*(nc*vl), + (nc*vl)*sizeof(R)); + else + memcpy(I + mc*(n*vl), buf1, (m-mc)*(n*vl)*sizeof(R)); + } + + X(ifree)(buf1); +} + +/* only cut one dimension if the resulting buffer is small enough */ +static int cut1(INT n, INT m, INT vl) +{ + return (X(imax)(n,m) >= X(iabs)(n-m) * MINBUFDIV + || X(imin)(n,m) * X(iabs)(n-m) * vl <= MAXBUF); +} + +#define CUT_NSRCH 32 /* range of sizes to search for possible cuts */ + +static int applicable_cut(const problem_rdft *p, planner *plnr, + int dim0, int dim1, int dim2, INT *nbuf) +{ + INT n = p->vecsz->dims[dim0].n; + INT m = p->vecsz->dims[dim1].n; + INT vl, vs; + get_transpose_vec(p, dim2, &vl, &vs); + *nbuf = 0; /* always small enough to be non-UGLY (?) */ + A(MINBUFDIV <= CUT_NSRCH); /* assumed to avoid inf. loops below */ + return (!NO_SLOWP(plnr) /* FIXME: not really SLOW for large 1d ffts? */ + && n != m + + /* Don't call transpose-cut recursively (avoid inf. loops): + the non-square sub-transpose produced when !cut1 + should always have gcd(n,m) >= min(CUT_NSRCH,n,m), + for which transpose-gcd is applicable */ + && (cut1(n, m, vl) + || gcd(n, m) < X(imin)(MINBUFDIV, X(imin)(n,m))) + + && Ntuple_transposable(p->vecsz->dims + dim0, + p->vecsz->dims + dim1, + vl, vs)); +} + +static int mkcldrn_cut(const problem_rdft *p, planner *plnr, P *ego) +{ + INT n = ego->n, m = ego->m, nc, mc; + INT vl = ego->vl; + R *buf; + + /* pick the "best" cut */ + if (cut1(n, m, vl)) { + nc = mc = X(imin)(n,m); + } + else { + INT dc, ns, ms; + dc = gcd(m, n); nc = n; mc = m; + /* search for cut with largest gcd + (TODO: different optimality criteria? different search range?) */ + for (ms = m; ms > 0 && ms > m - CUT_NSRCH; --ms) { + for (ns = n; ns > 0 && ns > n - CUT_NSRCH; --ns) { + INT ds = gcd(ms, ns); + if (ds > dc) { + dc = ds; nc = ns; mc = ms; + if (dc == X(imin)(ns, ms)) + break; /* cannot get larger than this */ + } + } + if (dc == X(imin)(n, ms)) + break; /* cannot get larger than this */ + } + A(dc >= X(imin)(CUT_NSRCH, X(imin)(n, m))); + } + ego->nc = nc; + ego->mc = mc; + ego->nbuf = (m-mc)*(nc*vl) + (n-nc)*(m*vl); + + buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS); + + if (m > mc) { + ego->cld1 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(nc, m*vl, vl, + m-mc, vl, nc*vl, + vl, 1, 1), + p->I + mc*vl, buf)); + if (!ego->cld1) + goto nada; + X(ops_add2)(&ego->cld1->ops, &ego->super.super.ops); + } + + ego->cld2 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(nc, mc*vl, vl, + mc, vl, nc*vl, + vl, 1, 1), + p->I, p->I)); + if (!ego->cld2) + goto nada; + X(ops_add2)(&ego->cld2->ops, &ego->super.super.ops); + + if (n > nc) { + ego->cld3 = X(mkplan_d)(plnr, + X(mkproblem_rdft_0_d)( + X(mktensor_3d)(n-nc, m*vl, vl, + m, vl, n*vl, + vl, 1, 1), + buf + (m-mc)*(nc*vl), p->I + nc*vl)); + if (!ego->cld3) + goto nada; + X(ops_add2)(&ego->cld3->ops, &ego->super.super.ops); + } + + /* memcpy/memmove operations */ + ego->super.super.ops.other += 2 * vl * (nc*mc * ((m > mc) + (n > nc)) + + (n-nc)*m + (m-mc)*nc); + + X(ifree)(buf); + return 1; + + nada: + X(ifree)(buf); + return 0; +} + +static const transpose_adt adt_cut = +{ + apply_cut, applicable_cut, mkcldrn_cut, + "rdft-transpose-cut" +}; + +/*************************************************************************/ +/* In-place transpose routine from TOMS, which follows the cycles of + the permutation so that it writes to each location only once. + Because of cache-line and other issues, however, this routine is + typically much slower than transpose-gcd or transpose-cut, even + though the latter do some extra writes. On the other hand, if the + vector length is large then the TOMS routine is best. + + The TOMS routine also has the advantage of requiring less buffer + space for the case of gcd(nx,ny) small. However, in this case it + has been superseded by the combination of the generalized + transpose-cut method with the transpose-gcd method, which can + always transpose with buffers a small fraction of the array size + regardless of gcd(nx,ny). */ + +/* + * TOMS Transpose. Algorithm 513 (Revised version of algorithm 380). + * + * These routines do in-place transposes of arrays. + * + * [ Cate, E.G. and Twigg, D.W., ACM Transactions on Mathematical Software, + * vol. 3, no. 1, 104-110 (1977) ] + * + * C version by Steven G. Johnson (February 1997). + */ + +/* + * "a" is a 1D array of length ny*nx*N which constains the nx x ny + * matrix of N-tuples to be transposed. "a" is stored in row-major + * order (last index varies fastest). move is a 1D array of length + * move_size used to store information to speed up the process. The + * value move_size=(ny+nx)/2 is recommended. buf should be an array + * of length 2*N. + * + */ + +static void transpose_toms513(R *a, INT nx, INT ny, INT N, + char *move, INT move_size, R *buf) +{ + INT i, im, mn; + R *b, *c, *d; + INT ncount; + INT k; + + /* check arguments and initialize: */ + A(ny > 0 && nx > 0 && N > 0 && move_size > 0); + + b = buf; + + /* Cate & Twigg have a special case for nx == ny, but we don't + bother, since we already have special code for this case elsewhere. */ + + c = buf + N; + ncount = 2; /* always at least 2 fixed points */ + k = (mn = ny * nx) - 1; + + for (i = 0; i < move_size; ++i) + move[i] = 0; + + if (ny >= 3 && nx >= 3) + ncount += gcd(ny - 1, nx - 1) - 1; /* # fixed points */ + + i = 1; + im = ny; + + while (1) { + INT i1, i2, i1c, i2c; + INT kmi; + + /** Rearrange the elements of a loop + and its companion loop: **/ + + i1 = i; + kmi = k - i; + i1c = kmi; + switch (N) { + case 1: + b[0] = a[i1]; + c[0] = a[i1c]; + break; + case 2: + b[0] = a[2*i1]; + b[1] = a[2*i1+1]; + c[0] = a[2*i1c]; + c[1] = a[2*i1c+1]; + break; + default: + memcpy(b, &a[N * i1], N * sizeof(R)); + memcpy(c, &a[N * i1c], N * sizeof(R)); + } + while (1) { + i2 = ny * i1 - k * (i1 / nx); + i2c = k - i2; + if (i1 < move_size) + move[i1] = 1; + if (i1c < move_size) + move[i1c] = 1; + ncount += 2; + if (i2 == i) + break; + if (i2 == kmi) { + d = b; + b = c; + c = d; + break; + } + switch (N) { + case 1: + a[i1] = a[i2]; + a[i1c] = a[i2c]; + break; + case 2: + a[2*i1] = a[2*i2]; + a[2*i1+1] = a[2*i2+1]; + a[2*i1c] = a[2*i2c]; + a[2*i1c+1] = a[2*i2c+1]; + break; + default: + memcpy(&a[N * i1], &a[N * i2], + N * sizeof(R)); + memcpy(&a[N * i1c], &a[N * i2c], + N * sizeof(R)); + } + i1 = i2; + i1c = i2c; + } + switch (N) { + case 1: + a[i1] = b[0]; + a[i1c] = c[0]; + break; + case 2: + a[2*i1] = b[0]; + a[2*i1+1] = b[1]; + a[2*i1c] = c[0]; + a[2*i1c+1] = c[1]; + break; + default: + memcpy(&a[N * i1], b, N * sizeof(R)); + memcpy(&a[N * i1c], c, N * sizeof(R)); + } + if (ncount >= mn) + break; /* we've moved all elements */ + + /** Search for loops to rearrange: **/ + + while (1) { + INT max = k - i; + ++i; + A(i <= max); + im += ny; + if (im > k) + im -= k; + i2 = im; + if (i == i2) + continue; + if (i >= move_size) { + while (i2 > i && i2 < max) { + i1 = i2; + i2 = ny * i1 - k * (i1 / nx); + } + if (i2 == i) + break; + } else if (!move[i]) + break; + } + } +} + +static void apply_toms513(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT n = ego->n, m = ego->m; + INT vl = ego->vl; + R *buf = (R *)MALLOC(sizeof(R) * ego->nbuf, BUFFERS); + UNUSED(O); + transpose_toms513(I, n, m, vl, (char *) (buf + 2*vl), (n+m)/2, buf); + X(ifree)(buf); +} + +static int applicable_toms513(const problem_rdft *p, planner *plnr, + int dim0, int dim1, int dim2, INT *nbuf) +{ + INT n = p->vecsz->dims[dim0].n; + INT m = p->vecsz->dims[dim1].n; + INT vl, vs; + get_transpose_vec(p, dim2, &vl, &vs); + *nbuf = 2*vl + + ((n + m) / 2 * sizeof(char) + sizeof(R) - 1) / sizeof(R); + return (!NO_SLOWP(plnr) + && (vl > 8 || !NO_UGLYP(plnr)) /* UGLY for small vl */ + && n != m + && Ntuple_transposable(p->vecsz->dims + dim0, + p->vecsz->dims + dim1, + vl, vs)); +} + +static int mkcldrn_toms513(const problem_rdft *p, planner *plnr, P *ego) +{ + UNUSED(p); UNUSED(plnr); + /* heuristic so that TOMS algorithm is last resort for small vl */ + ego->super.super.ops.other += ego->n * ego->m * 2 * (ego->vl + 30); + return 1; +} + +static const transpose_adt adt_toms513 = +{ + apply_toms513, applicable_toms513, mkcldrn_toms513, + "rdft-transpose-toms513" +}; + +/*-----------------------------------------------------------------------*/ +/*-----------------------------------------------------------------------*/ +/* generic stuff: */ + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld1, wakefulness); + X(plan_awake)(ego->cld2, wakefulness); + X(plan_awake)(ego->cld3, wakefulness); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + p->print(p, "(%s-%Dx%D%v", ego->slv->adt->nam, + ego->n, ego->m, ego->vl); + if (ego->cld1) p->print(p, "%(%p%)", ego->cld1); + if (ego->cld2) p->print(p, "%(%p%)", ego->cld2); + if (ego->cld3) p->print(p, "%(%p%)", ego->cld3); + p->print(p, ")"); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld3); + X(plan_destroy_internal)(ego->cld2); + X(plan_destroy_internal)(ego->cld1); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_rdft *p; + int dim0, dim1, dim2; + INT nbuf, vs; + P *pln; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr, &dim0, &dim1, &dim2, &nbuf)) + return (plan *) 0; + + p = (const problem_rdft *) p_; + pln = MKPLAN_RDFT(P, &padt, ego->adt->apply); + + pln->n = p->vecsz->dims[dim0].n; + pln->m = p->vecsz->dims[dim1].n; + get_transpose_vec(p, dim2, &pln->vl, &vs); + pln->nbuf = nbuf; + pln->d = gcd(pln->n, pln->m); + pln->nd = pln->n / pln->d; + pln->md = pln->m / pln->d; + pln->slv = ego; + + X(ops_zero)(&pln->super.super.ops); /* mkcldrn is responsible for ops */ + + pln->cld1 = pln->cld2 = pln->cld3 = 0; + if (!ego->adt->mkcldrn(p, plnr, pln)) { + X(plan_destroy_internal)(&(pln->super.super)); + return 0; + } + + return &(pln->super.super); +} + +static solver *mksolver(const transpose_adt *adt) +{ + static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->adt = adt; + return &(slv->super); +} + +void X(rdft_vrank3_transpose_register)(planner *p) +{ + unsigned i; + static const transpose_adt *const adts[] = { + &adt_gcd, &adt_cut, + &adt_toms513 + }; + for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) + REGISTER_SOLVER(p, mksolver(adts[i])); +}