Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/vrank-geq1-rdft2.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/vrank-geq1-rdft2.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,219 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + + +/* Plans for handling vector transform loops. These are *just* the + loops, and rely on child plans for the actual RDFT2s. + + They form a wrapper around solvers that don't have apply functions + for non-null vectors. + + vrank-geq1-rdft2 plans also recursively handle the case of + multi-dimensional vectors, obviating the need for most solvers to + deal with this. We can also play games here, such as reordering + the vector loops. + + Each vrank-geq1-rdft2 plan reduces the vector rank by 1, picking out a + dimension determined by the vecloop_dim field of the solver. */ + +#include "rdft.h" + +typedef struct { + solver super; + int vecloop_dim; + const int *buddies; + int nbuddies; +} S; + +typedef struct { + plan_rdft2 super; + + plan *cld; + INT vl; + INT rvs, cvs; + const S *solver; +} P; + +static void apply(const plan *ego_, R *r0, R *r1, R *cr, R *ci) +{ + const P *ego = (const P *) ego_; + INT i, vl = ego->vl; + INT rvs = ego->rvs, cvs = ego->cvs; + rdft2apply cldapply = ((plan_rdft2 *) ego->cld)->apply; + + for (i = 0; i < vl; ++i) { + cldapply(ego->cld, r0 + i * rvs, r1 + i * rvs, + cr + i * cvs, ci + i * cvs); + } +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + X(plan_awake)(ego->cld, wakefulness); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cld); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + const S *s = ego->solver; + p->print(p, "(rdft2-vrank>=1-x%D/%d%(%p%))", + ego->vl, s->vecloop_dim, ego->cld); +} + +static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp) +{ + return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies, + vecsz, oop, dp); +} + +static int applicable0(const solver *ego_, const problem *p_, int *dp) +{ + const S *ego = (const S *) ego_; + const problem_rdft2 *p = (const problem_rdft2 *) p_; + if (FINITE_RNK(p->vecsz->rnk) + && p->vecsz->rnk > 0 + && pickdim(ego, p->vecsz, p->r0 != p->cr, dp)) { + if (p->r0 != p->cr) + return 1; /* can always operate out-of-place */ + + return(X(rdft2_inplace_strides)(p, *dp)); + } + + return 0; +} + + +static int applicable(const solver *ego_, const problem *p_, + const planner *plnr, int *dp) +{ + const S *ego = (const S *)ego_; + if (!applicable0(ego_, p_, dp)) return 0; + + /* fftw2 behavior */ + if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0])) + return 0; + + if (NO_UGLYP(plnr)) { + const problem_rdft2 *p = (const problem_rdft2 *) p_; + iodim *d = p->vecsz->dims + *dp; + + /* Heuristic: if the transform is multi-dimensional, and the + vector stride is less than the transform size, then we + probably want to use a rank>=2 plan first in order to combine + this vector with the transform-dimension vectors. */ + if (p->sz->rnk > 1 + && X(imin)(X(iabs)(d->is), X(iabs)(d->os)) + < X(rdft2_tensor_max_index)(p->sz, p->kind) + ) + return 0; + + /* Heuristic: don't use a vrank-geq1 for rank-0 vrank-1 + transforms, since this case is better handled by rank-0 + solvers. */ + if (p->sz->rnk == 0 && p->vecsz->rnk == 1) return 0; + + if (NO_NONTHREADEDP(plnr)) + return 0; /* prefer threaded version */ + } + + return 1; +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_rdft2 *p; + P *pln; + plan *cld; + int vdim; + iodim *d; + INT rvs, cvs; + + static const plan_adt padt = { + X(rdft2_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr, &vdim)) + return (plan *) 0; + p = (const problem_rdft2 *) p_; + + d = p->vecsz->dims + vdim; + + A(d->n > 1); /* or else, p->ri + d->is etc. are invalid */ + + X(rdft2_strides)(p->kind, d, &rvs, &cvs); + + cld = X(mkplan_d)(plnr, + X(mkproblem_rdft2_d)( + X(tensor_copy)(p->sz), + X(tensor_copy_except)(p->vecsz, vdim), + TAINT(p->r0, rvs), TAINT(p->r1, rvs), + TAINT(p->cr, cvs), TAINT(p->ci, cvs), + p->kind)); + if (!cld) return (plan *) 0; + + pln = MKPLAN_RDFT2(P, &padt, apply); + + pln->cld = cld; + pln->vl = d->n; + pln->rvs = rvs; + pln->cvs = cvs; + + pln->solver = ego; + X(ops_zero)(&pln->super.super.ops); + pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */ + X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); + + if (p->sz->rnk != 1 || (p->sz->dims[0].n > 128)) + pln->super.super.pcost = pln->vl * cld->pcost; + + return &(pln->super.super); +} + +static solver *mksolver(int vecloop_dim, const int *buddies, int nbuddies) +{ + static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->vecloop_dim = vecloop_dim; + slv->buddies = buddies; + slv->nbuddies = nbuddies; + return &(slv->super); +} + +void X(rdft2_vrank_geq1_register)(planner *p) +{ + int i; + + /* FIXME: Should we try other vecloop_dim values? */ + static const int buddies[] = { 1, -1 }; + + const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); + + for (i = 0; i < nbuddies; ++i) + REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); +}