Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,231 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:29 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */ + +/* + * This function contains 41 FP additions, 40 FP multiplications, + * (or, 23 additions, 22 multiplications, 18 fused multiply/add), + * 52 stack variables, 2 constants, and 16 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { + V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk; + V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD; + V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM; + V TB, TA, Tx, Tw; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tb = LDW(&(W[0])); + Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Ti = LDW(&(W[TWVL * 12])); + Tr = LDW(&(W[TWVL * 10])); + T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T3 = VFMACONJ(T2, T1); + Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1)); + T4 = LDW(&(W[TWVL * 6])); + T9 = LDW(&(W[TWVL * 8])); + Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj)); + Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj)); + Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Te = LDW(&(W[TWVL * 4])); + Tp = LDW(&(W[TWVL * 2])); + T7 = VZMULJ(T4, VFMACONJ(T6, T5)); + Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5)); + Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf)); + Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf)); + TC = VADD(T3, T7); + T8 = VSUB(T3, T7); + Td = VSUB(Ta, Tc); + TF = VADD(Tc, Ta); + Tm = VSUB(Th, Tl); + TG = VADD(Th, Tl); + TD = VADD(Tq, Ts); + Tt = VSUB(Tq, Ts); + Tu = VSUB(Tm, Td); + Tn = VADD(Td, Tm); + TH = VSUB(TF, TG); + TL = VADD(TF, TG); + TE = VSUB(TC, TD); + TK = VADD(TC, TD); + Tz = VFMA(LDK(KP707106781), Tu, Tt); + Tv = VFNMS(LDK(KP707106781), Tu, Tt); + Ty = VFNMS(LDK(KP707106781), Tn, T8); + To = VFMA(LDK(KP707106781), Tn, T8); + TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE))); + TI = VMUL(LDK(KP500000000), VFMAI(TH, TE)); + TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK))); + TM = VMUL(LDK(KP500000000), VSUB(TK, TL)); + TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty)); + TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty))); + Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To))); + Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To)); + ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0])); + ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[0]), TM, ms, &(Rp[0])); + ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0])); + ST(&(Rm[0]), Tx, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} }; + +void XSIMD(codelet_hc2cfdftv_8) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */ + +/* + * This function contains 41 FP additions, 23 FP multiplications, + * (or, 41 additions, 23 multiplications, 0 fused multiply/add), + * 57 stack variables, 3 constants, and 16 memory accesses + */ +#include "hc2cfv.h" + +static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP707106781, +0.707106781186547524400844362104849039284835938); + DVK(KP353553390, +0.353553390593273762200422181052424519642417969); + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) { + V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4; + V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb; + V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO; + V TL, TP, TH, TJ, TM, TR, TN, TQ; + T1 = LD(&(Rp[0]), ms, &(Rp[0])); + T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T2 = LD(&(Rm[0]), -ms, &(Rm[0])); + T3 = VCONJ(T2); + T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T8 = VCONJ(T7); + T4 = VADD(T1, T3); + T5 = LDW(&(W[TWVL * 6])); + T9 = VZMULJ(T5, VADD(T6, T8)); + Ta = VADD(T4, T9); + TE = VMUL(LDK(KP500000000), VSUB(T4, T9)); + Tn = LDW(&(W[0])); + To = VZMULIJ(Tn, VSUB(T3, T1)); + Tp = LDW(&(W[TWVL * 8])); + Tq = VZMULIJ(Tp, VSUB(T8, T6)); + Tr = VADD(To, Tq); + TF = VSUB(To, Tq); + Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)])); + Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Te = VCONJ(Td); + Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)])); + Tj = VCONJ(Ti); + Tb = LDW(&(W[TWVL * 2])); + Tf = VZMULJ(Tb, VADD(Tc, Te)); + Tg = LDW(&(W[TWVL * 10])); + Tk = VZMULJ(Tg, VADD(Th, Tj)); + Tl = VADD(Tf, Tk); + TK = VSUB(Tf, Tk); + Ts = LDW(&(W[TWVL * 4])); + Tt = VZMULIJ(Ts, VSUB(Te, Tc)); + Tu = LDW(&(W[TWVL * 12])); + Tv = VZMULIJ(Tu, VSUB(Tj, Th)); + Tw = VADD(Tt, Tv); + TG = VSUB(Tv, Tt); + Tm = VADD(Ta, Tl); + Tx = VADD(Tr, Tw); + Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx))); + Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx)); + ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[0]), Tz, ms, &(Rp[0])); + TA = VSUB(Ta, Tl); + TB = VBYI(VSUB(Tw, Tr)); + TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB))); + TD = VMUL(LDK(KP500000000), VADD(TA, TB)); + ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0])); + TH = VMUL(LDK(KP353553390), VADD(TF, TG)); + TI = VADD(TE, TH); + TO = VSUB(TE, TH); + TJ = VMUL(LDK(KP707106781), VSUB(TG, TF)); + TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK))); + TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ))); + TM = VCONJ(VSUB(TI, TL)); + ST(&(Rm[0]), TM, -ms, &(Rm[0])); + TR = VADD(TO, TP); + ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)])); + TN = VADD(TI, TL); + ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)])); + TQ = VCONJ(VSUB(TO, TP)); + ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + VTW(1, 6), + VTW(1, 7), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} }; + +void XSIMD(codelet_hc2cfdftv_8) (planner *p) { + X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */