diff src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,231 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:42:29 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
+
+/*
+ * This function contains 41 FP additions, 40 FP multiplications,
+ * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
+ * 52 stack variables, 2 constants, and 16 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
+	       V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
+	       V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
+	       V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
+	       V TB, TA, Tx, Tw;
+	       T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Tb = LDW(&(W[0]));
+	       Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       Ti = LDW(&(W[TWVL * 12]));
+	       Tr = LDW(&(W[TWVL * 10]));
+	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T3 = VFMACONJ(T2, T1);
+	       Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
+	       T4 = LDW(&(W[TWVL * 6]));
+	       T9 = LDW(&(W[TWVL * 8]));
+	       Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
+	       Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
+	       Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       Te = LDW(&(W[TWVL * 4]));
+	       Tp = LDW(&(W[TWVL * 2]));
+	       T7 = VZMULJ(T4, VFMACONJ(T6, T5));
+	       Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
+	       Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
+	       Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
+	       TC = VADD(T3, T7);
+	       T8 = VSUB(T3, T7);
+	       Td = VSUB(Ta, Tc);
+	       TF = VADD(Tc, Ta);
+	       Tm = VSUB(Th, Tl);
+	       TG = VADD(Th, Tl);
+	       TD = VADD(Tq, Ts);
+	       Tt = VSUB(Tq, Ts);
+	       Tu = VSUB(Tm, Td);
+	       Tn = VADD(Td, Tm);
+	       TH = VSUB(TF, TG);
+	       TL = VADD(TF, TG);
+	       TE = VSUB(TC, TD);
+	       TK = VADD(TC, TD);
+	       Tz = VFMA(LDK(KP707106781), Tu, Tt);
+	       Tv = VFNMS(LDK(KP707106781), Tu, Tt);
+	       Ty = VFNMS(LDK(KP707106781), Tn, T8);
+	       To = VFMA(LDK(KP707106781), Tn, T8);
+	       TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
+	       TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
+	       TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
+	       TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
+	       TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
+	       TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
+	       Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
+	       Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
+	       ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
+	       ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[0]), TM, ms, &(Rp[0]));
+	       ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
+	       ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
+	       ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
+	       ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
+
+void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
+
+/*
+ * This function contains 41 FP additions, 23 FP multiplications,
+ * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
+ * 57 stack variables, 3 constants, and 16 memory accesses
+ */
+#include "hc2cfv.h"
+
+static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
+	       V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
+	       V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
+	       V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
+	       V TL, TP, TH, TJ, TM, TR, TN, TQ;
+	       T1 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       T3 = VCONJ(T2);
+	       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T8 = VCONJ(T7);
+	       T4 = VADD(T1, T3);
+	       T5 = LDW(&(W[TWVL * 6]));
+	       T9 = VZMULJ(T5, VADD(T6, T8));
+	       Ta = VADD(T4, T9);
+	       TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
+	       Tn = LDW(&(W[0]));
+	       To = VZMULIJ(Tn, VSUB(T3, T1));
+	       Tp = LDW(&(W[TWVL * 8]));
+	       Tq = VZMULIJ(Tp, VSUB(T8, T6));
+	       Tr = VADD(To, Tq);
+	       TF = VSUB(To, Tq);
+	       Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       Te = VCONJ(Td);
+	       Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       Tj = VCONJ(Ti);
+	       Tb = LDW(&(W[TWVL * 2]));
+	       Tf = VZMULJ(Tb, VADD(Tc, Te));
+	       Tg = LDW(&(W[TWVL * 10]));
+	       Tk = VZMULJ(Tg, VADD(Th, Tj));
+	       Tl = VADD(Tf, Tk);
+	       TK = VSUB(Tf, Tk);
+	       Ts = LDW(&(W[TWVL * 4]));
+	       Tt = VZMULIJ(Ts, VSUB(Te, Tc));
+	       Tu = LDW(&(W[TWVL * 12]));
+	       Tv = VZMULIJ(Tu, VSUB(Tj, Th));
+	       Tw = VADD(Tt, Tv);
+	       TG = VSUB(Tv, Tt);
+	       Tm = VADD(Ta, Tl);
+	       Tx = VADD(Tr, Tw);
+	       Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
+	       Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
+	       ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[0]), Tz, ms, &(Rp[0]));
+	       TA = VSUB(Ta, Tl);
+	       TB = VBYI(VSUB(Tw, Tr));
+	       TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
+	       TD = VMUL(LDK(KP500000000), VADD(TA, TB));
+	       ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
+	       TH = VMUL(LDK(KP353553390), VADD(TF, TG));
+	       TI = VADD(TE, TH);
+	       TO = VSUB(TE, TH);
+	       TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
+	       TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
+	       TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
+	       TM = VCONJ(VSUB(TI, TL));
+	       ST(&(Rm[0]), TM, -ms, &(Rm[0]));
+	       TR = VADD(TO, TP);
+	       ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
+	       TN = VADD(TI, TL);
+	       ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
+	       TQ = VCONJ(VSUB(TO, TP));
+	       ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
+
+void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
+     X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */