diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_8.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_8.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,228 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:42:29 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
+
+/*
+ * This function contains 41 FP additions, 32 FP multiplications,
+ * (or, 23 additions, 14 multiplications, 18 fused multiply/add),
+ * 51 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
+	       V TJ, T4, Tf, TB, TD, TE, Tm, T1, Tj, TF, Tp, Tb, Tg, Tt, Tx;
+	       V T2, T3, Td, Te, T5, T6, T8, T9, Tn, T7, To, Ta, Tk, Tl, TG;
+	       V TL, Tq, Tc, Tu, Th, Tv, Ty, Tw, TC, Ti, TK, TA, Tz, TI, TH;
+	       V Ts, Tr, TN, TM;
+	       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       TJ = LDW(&(W[0]));
+	       Tk = VFMACONJ(T3, T2);
+	       T4 = VFNMSCONJ(T3, T2);
+	       Tl = VFMACONJ(Te, Td);
+	       Tf = VFNMSCONJ(Te, Td);
+	       Tn = VFMACONJ(T6, T5);
+	       T7 = VFNMSCONJ(T6, T5);
+	       To = VFMACONJ(T9, T8);
+	       Ta = VFMSCONJ(T9, T8);
+	       TB = LDW(&(W[TWVL * 8]));
+	       TD = LDW(&(W[TWVL * 6]));
+	       TE = VADD(Tk, Tl);
+	       Tm = VSUB(Tk, Tl);
+	       T1 = LDW(&(W[TWVL * 12]));
+	       Tj = LDW(&(W[TWVL * 10]));
+	       TF = VADD(Tn, To);
+	       Tp = VSUB(Tn, To);
+	       Tb = VADD(T7, Ta);
+	       Tg = VSUB(T7, Ta);
+	       Tt = LDW(&(W[TWVL * 4]));
+	       Tx = LDW(&(W[TWVL * 2]));
+	       TG = VZMUL(TD, VSUB(TE, TF));
+	       TL = VADD(TE, TF);
+	       Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
+	       Tc = VFMA(LDK(KP707106781), Tb, T4);
+	       Tu = VFNMS(LDK(KP707106781), Tb, T4);
+	       Th = VFMA(LDK(KP707106781), Tg, Tf);
+	       Tv = VFNMS(LDK(KP707106781), Tg, Tf);
+	       Ty = VZMUL(Tx, VFMAI(Tp, Tm));
+	       Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
+	       TC = VZMULI(TB, VFMAI(Tv, Tu));
+	       Ti = VZMULI(T1, VFNMSI(Th, Tc));
+	       TK = VZMULI(TJ, VFMAI(Th, Tc));
+	       TA = VCONJ(VSUB(Ty, Tw));
+	       Tz = VADD(Tw, Ty);
+	       TI = VCONJ(VSUB(TG, TC));
+	       TH = VADD(TC, TG);
+	       Ts = VCONJ(VSUB(Tq, Ti));
+	       Tr = VADD(Ti, Tq);
+	       TN = VCONJ(VSUB(TL, TK));
+	       TM = VADD(TK, TL);
+	       ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
+	       ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
+	       ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
+	       ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
+	       ST(&(Rm[0]), TN, -ms, &(Rm[0]));
+	       ST(&(Rp[0]), TM, ms, &(Rp[0]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {23, 14, 18, 0} };
+
+void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include hc2cbv.h */
+
+/*
+ * This function contains 41 FP additions, 16 FP multiplications,
+ * (or, 41 additions, 16 multiplications, 0 fused multiply/add),
+ * 55 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
+	       V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
+	       V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
+	       V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
+	       V Ty, Tz, Tx, TF, TD, TM, TE, TL;
+	       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       T4 = VCONJ(T3);
+	       Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       Ti = VCONJ(Th);
+	       T5 = VSUB(T2, T4);
+	       Tj = VSUB(Tg, Ti);
+	       To = VADD(T2, T4);
+	       Tp = VADD(Tg, Ti);
+	       Tq = VSUB(To, Tp);
+	       TI = VADD(To, Tp);
+	       T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T8 = VCONJ(T7);
+	       Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Tb = VCONJ(Ta);
+	       T9 = VSUB(T6, T8);
+	       Td = VSUB(Tb, Tc);
+	       Te = VMUL(LDK(KP707106781), VADD(T9, Td));
+	       Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
+	       Tr = VADD(T6, T8);
+	       Ts = VADD(Tb, Tc);
+	       Tt = VBYI(VSUB(Tr, Ts));
+	       TJ = VADD(Tr, Ts);
+	       TP = VADD(TI, TJ);
+	       Tn = LDW(&(W[TWVL * 10]));
+	       Tu = VZMUL(Tn, VSUB(Tq, Tt));
+	       Tf = VADD(T5, Te);
+	       Tl = VBYI(VADD(Tj, Tk));
+	       T1 = LDW(&(W[TWVL * 12]));
+	       Tm = VZMULI(T1, VSUB(Tf, Tl));
+	       TN = LDW(&(W[0]));
+	       TO = VZMULI(TN, VADD(Tl, Tf));
+	       Tv = VADD(Tm, Tu);
+	       ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
+	       TR = VCONJ(VSUB(TP, TO));
+	       ST(&(Rm[0]), TR, -ms, &(Rm[0]));
+	       Tw = VCONJ(VSUB(Tu, Tm));
+	       ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
+	       TQ = VADD(TO, TP);
+	       ST(&(Rp[0]), TQ, ms, &(Rp[0]));
+	       TB = LDW(&(W[TWVL * 2]));
+	       TC = VZMUL(TB, VADD(Tq, Tt));
+	       TH = LDW(&(W[TWVL * 6]));
+	       TK = VZMUL(TH, VSUB(TI, TJ));
+	       Ty = VBYI(VSUB(Tk, Tj));
+	       Tz = VSUB(T5, Te);
+	       Tx = LDW(&(W[TWVL * 4]));
+	       TA = VZMULI(Tx, VADD(Ty, Tz));
+	       TF = LDW(&(W[TWVL * 8]));
+	       TG = VZMULI(TF, VSUB(Tz, Ty));
+	       TD = VADD(TA, TC);
+	       ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
+	       TM = VCONJ(VSUB(TK, TG));
+	       ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
+	       TE = VCONJ(VSUB(TC, TA));
+	       ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
+	       TL = VADD(TG, TK);
+	       ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, {41, 16, 0, 0} };
+
+void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */