Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_6.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_6.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,191 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:29 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */ + +/* + * This function contains 29 FP additions, 24 FP multiplications, + * (or, 17 additions, 12 multiplications, 12 fused multiply/add), + * 38 stack variables, 2 constants, and 12 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { + V Tv, Tn, Tr, Te, T4, Tg, Ta, Tf, T7, T1, Td, T2, T3, T8, T9; + V T5, T6, Th, Tj, Tb, Tp, Tx, Ti, Tc, To, Tk, Ts, Tq, Tw, Tm; + V Tl, Tu, Tt, Tz, Ty; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + T6 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tv = LDW(&(W[0])); + Tn = LDW(&(W[TWVL * 8])); + Tr = LDW(&(W[TWVL * 6])); + Te = VFMACONJ(T3, T2); + T4 = VFNMSCONJ(T3, T2); + Tg = VFMACONJ(T9, T8); + Ta = VFMSCONJ(T9, T8); + Tf = VFMACONJ(T6, T5); + T7 = VFNMSCONJ(T6, T5); + T1 = LDW(&(W[TWVL * 4])); + Td = LDW(&(W[TWVL * 2])); + Th = VADD(Tf, Tg); + Tj = VMUL(LDK(KP866025403), VSUB(Tf, Tg)); + Tb = VADD(T7, Ta); + Tp = VMUL(LDK(KP866025403), VSUB(T7, Ta)); + Tx = VADD(Te, Th); + Ti = VFNMS(LDK(KP500000000), Th, Te); + Tc = VZMULI(T1, VADD(T4, Tb)); + To = VFNMS(LDK(KP500000000), Tb, T4); + Tk = VZMUL(Td, VFNMSI(Tj, Ti)); + Ts = VZMUL(Tr, VFMAI(Tj, Ti)); + Tq = VZMULI(Tn, VFNMSI(Tp, To)); + Tw = VZMULI(Tv, VFMAI(Tp, To)); + Tm = VCONJ(VSUB(Tk, Tc)); + Tl = VADD(Tc, Tk); + Tu = VCONJ(VSUB(Ts, Tq)); + Tt = VADD(Tq, Ts); + Tz = VCONJ(VSUB(Tx, Tw)); + Ty = VADD(Tw, Tx); + ST(&(Rm[WS(rs, 1)]), Tm, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 1)]), Tl, ms, &(Rp[WS(rs, 1)])); + ST(&(Rm[WS(rs, 2)]), Tu, -ms, &(Rm[0])); + ST(&(Rp[WS(rs, 2)]), Tt, ms, &(Rp[0])); + ST(&(Rm[0]), Tz, -ms, &(Rm[0])); + ST(&(Rp[0]), Ty, ms, &(Rp[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {17, 12, 12, 0} }; + +void XSIMD(codelet_hc2cbdftv_6) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dif -sign 1 -name hc2cbdftv_6 -include hc2cbv.h */ + +/* + * This function contains 29 FP additions, 14 FP multiplications, + * (or, 27 additions, 12 multiplications, 2 fused multiply/add), + * 41 stack variables, 2 constants, and 12 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DVK(KP500000000, +0.500000000000000000000000000000000000000000000); + DVK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) { + V T5, Th, Te, Ts, Tk, Tm, T2, T4, T3, T6, Tc, T8, Tb, T7, Ta; + V T9, Td, Ti, Tj, TA, Tf, Tn, Tv, Tt, Tz, T1, Tl, Tg, Tu, Tr; + V Tq, Ty, To, Tp, TC, TB, Tx, Tw; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0])); + T4 = VCONJ(T3); + T5 = VSUB(T2, T4); + Th = VADD(T2, T4); + T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0])); + Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T7 = LD(&(Rm[0]), -ms, &(Rm[0])); + T8 = VCONJ(T7); + Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + Tb = VCONJ(Ta); + T9 = VSUB(T6, T8); + Td = VSUB(Tb, Tc); + Te = VADD(T9, Td); + Ts = VBYI(VMUL(LDK(KP866025403), VSUB(T9, Td))); + Ti = VADD(T6, T8); + Tj = VADD(Tb, Tc); + Tk = VADD(Ti, Tj); + Tm = VBYI(VMUL(LDK(KP866025403), VSUB(Ti, Tj))); + TA = VADD(Th, Tk); + T1 = LDW(&(W[TWVL * 4])); + Tf = VZMULI(T1, VADD(T5, Te)); + Tl = VFNMS(LDK(KP500000000), Tk, Th); + Tg = LDW(&(W[TWVL * 2])); + Tn = VZMUL(Tg, VSUB(Tl, Tm)); + Tu = LDW(&(W[TWVL * 6])); + Tv = VZMUL(Tu, VADD(Tm, Tl)); + Tr = VFNMS(LDK(KP500000000), Te, T5); + Tq = LDW(&(W[TWVL * 8])); + Tt = VZMULI(Tq, VSUB(Tr, Ts)); + Ty = LDW(&(W[0])); + Tz = VZMULI(Ty, VADD(Ts, Tr)); + To = VADD(Tf, Tn); + ST(&(Rp[WS(rs, 1)]), To, ms, &(Rp[WS(rs, 1)])); + Tp = VCONJ(VSUB(Tn, Tf)); + ST(&(Rm[WS(rs, 1)]), Tp, -ms, &(Rm[WS(rs, 1)])); + TC = VCONJ(VSUB(TA, Tz)); + ST(&(Rm[0]), TC, -ms, &(Rm[0])); + TB = VADD(Tz, TA); + ST(&(Rp[0]), TB, ms, &(Rp[0])); + Tx = VCONJ(VSUB(Tv, Tt)); + ST(&(Rm[WS(rs, 2)]), Tx, -ms, &(Rm[0])); + Tw = VADD(Tt, Tv); + ST(&(Rp[WS(rs, 2)]), Tw, ms, &(Rp[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + VTW(1, 4), + VTW(1, 5), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cbdftv_6"), twinstr, &GENUS, {27, 12, 2, 0} }; + +void XSIMD(codelet_hc2cbdftv_6) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_6, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */