Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_4.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_4.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,144 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:29 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */ + +/* + * This function contains 15 FP additions, 12 FP multiplications, + * (or, 9 additions, 6 multiplications, 6 fused multiply/add), + * 20 stack variables, 0 constants, and 8 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T2, T3, T5, T6, Tf, T1, T9, Ta, T4, Tb, T7, Tc, Th, T8, Tg; + V Te, Td, Ti, Tj; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T6 = LD(&(Rm[0]), -ms, &(Rm[0])); + Tf = LDW(&(W[0])); + T1 = LDW(&(W[TWVL * 4])); + T9 = LDW(&(W[TWVL * 2])); + Ta = VFMACONJ(T3, T2); + T4 = VFNMSCONJ(T3, T2); + Tb = VFMACONJ(T6, T5); + T7 = VFNMSCONJ(T6, T5); + Tc = VZMUL(T9, VSUB(Ta, Tb)); + Th = VADD(Ta, Tb); + T8 = VZMULI(T1, VFNMSI(T7, T4)); + Tg = VZMULI(Tf, VFMAI(T7, T4)); + Te = VCONJ(VSUB(Tc, T8)); + Td = VADD(T8, Tc); + Ti = VADD(Tg, Th); + Tj = VCONJ(VSUB(Th, Tg)); + ST(&(Rm[WS(rs, 1)]), Te, -ms, &(Rm[WS(rs, 1)])); + ST(&(Rp[WS(rs, 1)]), Td, ms, &(Rp[WS(rs, 1)])); + ST(&(Rp[0]), Ti, ms, &(Rp[0])); + ST(&(Rm[0]), Tj, -ms, &(Rm[0])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {9, 6, 6, 0} }; + +void XSIMD(codelet_hc2cbdftv_4) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dif -sign 1 -name hc2cbdftv_4 -include hc2cbv.h */ + +/* + * This function contains 15 FP additions, 6 FP multiplications, + * (or, 15 additions, 6 multiplications, 0 fused multiply/add), + * 22 stack variables, 0 constants, and 8 memory accesses + */ +#include "hc2cbv.h" + +static void hc2cbdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + { + INT m; + for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) { + V T5, Tc, T9, Td, T2, T4, T3, T6, T8, T7, Tj, Ti, Th, Tk, Tl; + V Ta, Te, T1, Tb, Tf, Tg; + T2 = LD(&(Rp[0]), ms, &(Rp[0])); + T3 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)])); + T4 = VCONJ(T3); + T5 = VSUB(T2, T4); + Tc = VADD(T2, T4); + T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)])); + T7 = LD(&(Rm[0]), -ms, &(Rm[0])); + T8 = VCONJ(T7); + T9 = VBYI(VSUB(T6, T8)); + Td = VADD(T6, T8); + Tj = VADD(Tc, Td); + Th = LDW(&(W[0])); + Ti = VZMULI(Th, VADD(T5, T9)); + Tk = VADD(Ti, Tj); + ST(&(Rp[0]), Tk, ms, &(Rp[0])); + Tl = VCONJ(VSUB(Tj, Ti)); + ST(&(Rm[0]), Tl, -ms, &(Rm[0])); + T1 = LDW(&(W[TWVL * 4])); + Ta = VZMULI(T1, VSUB(T5, T9)); + Tb = LDW(&(W[TWVL * 2])); + Te = VZMUL(Tb, VSUB(Tc, Td)); + Tf = VADD(Ta, Te); + ST(&(Rp[WS(rs, 1)]), Tf, ms, &(Rp[WS(rs, 1)])); + Tg = VCONJ(VSUB(Te, Ta)); + ST(&(Rm[WS(rs, 1)]), Tg, -ms, &(Rm[WS(rs, 1)])); + } + } + VLEAVE(); +} + +static const tw_instr twinstr[] = { + VTW(1, 1), + VTW(1, 2), + VTW(1, 3), + {TW_NEXT, VL, 0} +}; + +static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cbdftv_4"), twinstr, &GENUS, {15, 6, 0, 0} }; + +void XSIMD(codelet_hc2cbdftv_4) (planner *p) { + X(khc2c_register) (p, hc2cbdftv_4, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */