diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_12.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_12.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,324 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:42:30 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
+
+/*
+ * This function contains 71 FP additions, 51 FP multiplications,
+ * (or, 45 additions, 25 multiplications, 26 fused multiply/add),
+ * 88 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
+	       V Tz, TT, T1, T1j, TN, TF, TP, TL, Tx, T15, TJ, T1b, T1g, T1l, T18;
+	       V T12, TO, TC, TK, Tl, T16, TQ, TU, TG, T1c, TM, T1k, Ty, T19, T1a;
+	       V T13, T14, T1h, T1i, TS, TR, T1m, T1n, TI, TH;
+	       {
+		    V T2, Tm, T7, Tp, T8, Tq, T9, Tu, T5, Tr, Tg, Tn, Tj, Ta, T3;
+		    V T4, Te, Tf, Th, Ti, TV, T6, TW, Tk, TD, Tt, TB, T11, T1f, Tw;
+		    V TE, TX, Tc, Ts, T10, TZ, To, Tb, Tv, T17, T1d, T1e, TY, TA, Td;
+		    T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+		    Tm = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+		    T7 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
+		    Tp = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+		    T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+		    T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+		    Te = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+		    Tf = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
+		    Th = LD(&(Rm[0]), -ms, &(Rm[0]));
+		    Ti = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+		    T8 = VCONJ(T7);
+		    Tq = VCONJ(Tp);
+		    T9 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+		    Tu = VFNMSCONJ(T4, T3);
+		    T5 = VFMACONJ(T4, T3);
+		    Tr = VADD(Te, Tf);
+		    Tg = VSUB(Te, Tf);
+		    Tn = VADD(Ti, Th);
+		    Tj = VSUB(Th, Ti);
+		    Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+		    TV = LDW(&(W[TWVL * 4]));
+		    Tz = LDW(&(W[TWVL * 18]));
+		    T6 = VFNMS(LDK(KP500000000), T5, T2);
+		    TW = VADD(T2, T5);
+		    Ts = VFNMS(LDK(KP500000000), Tr, Tq);
+		    T10 = VFMACONJ(Tp, Tr);
+		    TZ = VFMACONJ(Tn, Tm);
+		    To = VFNMS(LDK(KP500000000), VCONJ(Tn), Tm);
+		    Tk = VFMACONJ(Tj, Tg);
+		    TD = VFNMSCONJ(Tj, Tg);
+		    Tb = VFMACONJ(Ta, T9);
+		    Tv = VFMSCONJ(Ta, T9);
+		    TT = LDW(&(W[TWVL * 2]));
+		    T1 = LDW(&(W[TWVL * 20]));
+		    Tt = VSUB(To, Ts);
+		    TB = VADD(To, Ts);
+		    T11 = VSUB(TZ, T10);
+		    T1f = VADD(TZ, T10);
+		    Tw = VSUB(Tu, Tv);
+		    TE = VADD(Tu, Tv);
+		    TX = VFMACONJ(T7, Tb);
+		    Tc = VFNMS(LDK(KP500000000), Tb, T8);
+		    T1j = LDW(&(W[0]));
+		    T17 = LDW(&(W[TWVL * 16]));
+		    T1d = LDW(&(W[TWVL * 10]));
+		    TN = LDW(&(W[TWVL * 6]));
+		    TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
+		    TP = VMUL(LDK(KP866025403), VADD(TE, TD));
+		    TL = VFNMS(LDK(KP866025403), Tw, Tt);
+		    Tx = VFMA(LDK(KP866025403), Tw, Tt);
+		    T1e = VADD(TW, TX);
+		    TY = VSUB(TW, TX);
+		    TA = VADD(T6, Tc);
+		    Td = VSUB(T6, Tc);
+		    T15 = LDW(&(W[TWVL * 14]));
+		    TJ = LDW(&(W[TWVL * 8]));
+		    T1b = LDW(&(W[TWVL * 12]));
+		    T1g = VZMUL(T1d, VSUB(T1e, T1f));
+		    T1l = VADD(T1e, T1f);
+		    T18 = VZMULI(T17, VFMAI(T11, TY));
+		    T12 = VZMULI(TV, VFNMSI(T11, TY));
+		    TO = VADD(TA, TB);
+		    TC = VSUB(TA, TB);
+		    TK = VFNMS(LDK(KP866025403), Tk, Td);
+		    Tl = VFMA(LDK(KP866025403), Tk, Td);
+	       }
+	       T16 = VZMUL(T15, VFNMSI(TP, TO));
+	       TQ = VZMUL(TN, VFMAI(TP, TO));
+	       TU = VZMUL(TT, VFMAI(TF, TC));
+	       TG = VZMUL(Tz, VFNMSI(TF, TC));
+	       T1c = VZMULI(T1b, VFNMSI(TL, TK));
+	       TM = VZMULI(TJ, VFMAI(TL, TK));
+	       T1k = VZMULI(T1j, VFMAI(Tx, Tl));
+	       Ty = VZMULI(T1, VFNMSI(Tx, Tl));
+	       T19 = VCONJ(VSUB(T16, T18));
+	       T1a = VADD(T16, T18);
+	       T13 = VCONJ(VSUB(TU, T12));
+	       T14 = VADD(TU, T12);
+	       T1h = VADD(T1c, T1g);
+	       T1i = VCONJ(VSUB(T1g, T1c));
+	       TS = VCONJ(VSUB(TQ, TM));
+	       TR = VADD(TM, TQ);
+	       T1m = VADD(T1k, T1l);
+	       T1n = VCONJ(VSUB(T1l, T1k));
+	       TI = VCONJ(VSUB(TG, Ty));
+	       TH = VADD(Ty, TG);
+	       ST(&(Rm[WS(rs, 4)]), T19, -ms, &(Rm[0]));
+	       ST(&(Rp[WS(rs, 4)]), T1a, ms, &(Rp[0]));
+	       ST(&(Rm[WS(rs, 1)]), T13, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 3)]), T1h, ms, &(Rp[WS(rs, 1)]));
+	       ST(&(Rm[WS(rs, 3)]), T1i, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rm[WS(rs, 2)]), TS, -ms, &(Rm[0]));
+	       ST(&(Rp[WS(rs, 2)]), TR, ms, &(Rp[0]));
+	       ST(&(Rp[0]), T1m, ms, &(Rp[0]));
+	       ST(&(Rm[0]), T1n, -ms, &(Rm[0]));
+	       ST(&(Rm[WS(rs, 5)]), TI, -ms, &(Rm[WS(rs, 1)]));
+	       ST(&(Rp[WS(rs, 5)]), TH, ms, &(Rp[WS(rs, 1)]));
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     VTW(1, 10),
+     VTW(1, 11),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {45, 25, 26, 0} };
+
+void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 12 -dif -sign 1 -name hc2cbdftv_12 -include hc2cbv.h */
+
+/*
+ * This function contains 71 FP additions, 30 FP multiplications,
+ * (or, 67 additions, 26 multiplications, 4 fused multiply/add),
+ * 90 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 22)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(48, rs)) {
+	       V TY, TZ, Tf, TC, Tq, TG, Tm, TF, Ty, TD, T13, T1h, T2, T9, T3;
+	       V T5, T6, Tc, Tb, Td, T8, T4, Ta, T7, Te, To, Tp, Tr, Tv, Ti;
+	       V Ts, Tl, Tw, Tu, Tg, Th, Tj, Tk, Tt, Tx, T11, T12;
+	       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T8 = LD(&(Rm[WS(rs, 5)]), -ms, &(Rm[WS(rs, 1)]));
+	       T9 = VCONJ(T8);
+	       T3 = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+	       T4 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       T5 = VCONJ(T4);
+	       T6 = VADD(T3, T5);
+	       Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       Tb = VCONJ(Ta);
+	       Td = VADD(Tb, Tc);
+	       TY = VADD(T2, T6);
+	       TZ = VADD(T9, Td);
+	       T7 = VFNMS(LDK(KP500000000), T6, T2);
+	       Te = VFNMS(LDK(KP500000000), Td, T9);
+	       Tf = VSUB(T7, Te);
+	       TC = VADD(T7, Te);
+	       To = VSUB(T3, T5);
+	       Tp = VSUB(Tb, Tc);
+	       Tq = VMUL(LDK(KP866025403), VSUB(To, Tp));
+	       TG = VADD(To, Tp);
+	       Tr = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Tu = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       Tv = VCONJ(Tu);
+	       Tg = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+	       Th = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Ti = VCONJ(VSUB(Tg, Th));
+	       Ts = VCONJ(VADD(Tg, Th));
+	       Tj = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tk = LD(&(Rp[WS(rs, 5)]), ms, &(Rp[WS(rs, 1)]));
+	       Tl = VSUB(Tj, Tk);
+	       Tw = VADD(Tj, Tk);
+	       Tm = VMUL(LDK(KP866025403), VSUB(Ti, Tl));
+	       TF = VADD(Ti, Tl);
+	       Tt = VFNMS(LDK(KP500000000), Ts, Tr);
+	       Tx = VFNMS(LDK(KP500000000), Tw, Tv);
+	       Ty = VSUB(Tt, Tx);
+	       TD = VADD(Tt, Tx);
+	       T11 = VADD(Tr, Ts);
+	       T12 = VADD(Tv, Tw);
+	       T13 = VBYI(VSUB(T11, T12));
+	       T1h = VADD(T11, T12);
+	       {
+		    V T1n, T1i, T14, T1a, TA, T1m, TS, T18, TO, T1e, TI, TW, T1g, T1f, T10;
+		    V TX, T19, Tn, Tz, T1, T1l, TQ, TR, TP, T17, TM, TN, TL, T1d, TE;
+		    V TH, TB, TV, TJ, T1p, T1k, TT, T1o, TK, TU, T1j, T1b, T16, T1c, T15;
+		    T1g = VADD(TY, TZ);
+		    T1n = VADD(T1g, T1h);
+		    T1f = LDW(&(W[TWVL * 10]));
+		    T1i = VZMUL(T1f, VSUB(T1g, T1h));
+		    T10 = VSUB(TY, TZ);
+		    TX = LDW(&(W[TWVL * 4]));
+		    T14 = VZMULI(TX, VSUB(T10, T13));
+		    T19 = LDW(&(W[TWVL * 16]));
+		    T1a = VZMULI(T19, VADD(T10, T13));
+		    Tn = VSUB(Tf, Tm);
+		    Tz = VBYI(VADD(Tq, Ty));
+		    T1 = LDW(&(W[TWVL * 20]));
+		    TA = VZMULI(T1, VSUB(Tn, Tz));
+		    T1l = LDW(&(W[0]));
+		    T1m = VZMULI(T1l, VADD(Tn, Tz));
+		    TQ = VBYI(VMUL(LDK(KP866025403), VADD(TG, TF)));
+		    TR = VADD(TC, TD);
+		    TP = LDW(&(W[TWVL * 6]));
+		    TS = VZMUL(TP, VADD(TQ, TR));
+		    T17 = LDW(&(W[TWVL * 14]));
+		    T18 = VZMUL(T17, VSUB(TR, TQ));
+		    TM = VADD(Tf, Tm);
+		    TN = VBYI(VSUB(Ty, Tq));
+		    TL = LDW(&(W[TWVL * 8]));
+		    TO = VZMULI(TL, VADD(TM, TN));
+		    T1d = LDW(&(W[TWVL * 12]));
+		    T1e = VZMULI(T1d, VSUB(TM, TN));
+		    TE = VSUB(TC, TD);
+		    TH = VBYI(VMUL(LDK(KP866025403), VSUB(TF, TG)));
+		    TB = LDW(&(W[TWVL * 18]));
+		    TI = VZMUL(TB, VSUB(TE, TH));
+		    TV = LDW(&(W[TWVL * 2]));
+		    TW = VZMUL(TV, VADD(TH, TE));
+		    TJ = VADD(TA, TI);
+		    ST(&(Rp[WS(rs, 5)]), TJ, ms, &(Rp[WS(rs, 1)]));
+		    T1p = VCONJ(VSUB(T1n, T1m));
+		    ST(&(Rm[0]), T1p, -ms, &(Rm[0]));
+		    T1k = VCONJ(VSUB(T1i, T1e));
+		    ST(&(Rm[WS(rs, 3)]), T1k, -ms, &(Rm[WS(rs, 1)]));
+		    TT = VADD(TO, TS);
+		    ST(&(Rp[WS(rs, 2)]), TT, ms, &(Rp[0]));
+		    T1o = VADD(T1m, T1n);
+		    ST(&(Rp[0]), T1o, ms, &(Rp[0]));
+		    TK = VCONJ(VSUB(TI, TA));
+		    ST(&(Rm[WS(rs, 5)]), TK, -ms, &(Rm[WS(rs, 1)]));
+		    TU = VCONJ(VSUB(TS, TO));
+		    ST(&(Rm[WS(rs, 2)]), TU, -ms, &(Rm[0]));
+		    T1j = VADD(T1e, T1i);
+		    ST(&(Rp[WS(rs, 3)]), T1j, ms, &(Rp[WS(rs, 1)]));
+		    T1b = VCONJ(VSUB(T18, T1a));
+		    ST(&(Rm[WS(rs, 4)]), T1b, -ms, &(Rm[0]));
+		    T16 = VADD(TW, T14);
+		    ST(&(Rp[WS(rs, 1)]), T16, ms, &(Rp[WS(rs, 1)]));
+		    T1c = VADD(T18, T1a);
+		    ST(&(Rp[WS(rs, 4)]), T1c, ms, &(Rp[0]));
+		    T15 = VCONJ(VSUB(TW, T14));
+		    ST(&(Rm[WS(rs, 1)]), T15, -ms, &(Rm[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     VTW(1, 10),
+     VTW(1, 11),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 12, XSIMD_STRING("hc2cbdftv_12"), twinstr, &GENUS, {67, 26, 4, 0} };
+
+void XSIMD(codelet_hc2cbdftv_12) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_12, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */