diff src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_10.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/simd/common/hc2cbdftv_10.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,295 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:42:29 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
+
+/*
+ * This function contains 61 FP additions, 50 FP multiplications,
+ * (or, 33 additions, 22 multiplications, 28 fused multiply/add),
+ * 76 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
+	       V Ts, T4, TR, T1, TZ, TD, Ty, Tn, Ti, TT, T11, TJ, T15, Tr, TN;
+	       V TE, Tv, To, Tb, T8, Tw, Te, Tx, Th, Tt, T7, T9, T2, T3, Tc;
+	       V Td, Tf, Tg, T5, T6, Tu, Ta;
+	       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+	       Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+	       Td = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Ts = VFMACONJ(T3, T2);
+	       T4 = VFNMSCONJ(T3, T2);
+	       Tw = VFMACONJ(Td, Tc);
+	       Te = VFNMSCONJ(Td, Tc);
+	       Tx = VFMACONJ(Tg, Tf);
+	       Th = VFMSCONJ(Tg, Tf);
+	       Tt = VFMACONJ(T6, T5);
+	       T7 = VFNMSCONJ(T6, T5);
+	       T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       TR = LDW(&(W[TWVL * 8]));
+	       T1 = LDW(&(W[TWVL * 4]));
+	       TZ = LDW(&(W[TWVL * 12]));
+	       TD = VSUB(Tw, Tx);
+	       Ty = VADD(Tw, Tx);
+	       Tn = VSUB(Te, Th);
+	       Ti = VADD(Te, Th);
+	       Tu = VFMACONJ(T9, T8);
+	       Ta = VFMSCONJ(T9, T8);
+	       TT = LDW(&(W[TWVL * 6]));
+	       T11 = LDW(&(W[TWVL * 10]));
+	       TJ = LDW(&(W[TWVL * 16]));
+	       T15 = LDW(&(W[0]));
+	       Tr = LDW(&(W[TWVL * 2]));
+	       TN = LDW(&(W[TWVL * 14]));
+	       TE = VSUB(Tt, Tu);
+	       Tv = VADD(Tt, Tu);
+	       To = VSUB(T7, Ta);
+	       Tb = VADD(T7, Ta);
+	       {
+		    V TV, TF, Tz, TB, TL, Tp, Tj, Tl, T17, TA, TS, Tk, TC, TU, TK;
+		    V Tm, TO, TG, T12, TW, T16, TM, T10, Tq, TX, TY, T18, T19, TQ, TP;
+		    V T13, T14, TI, TH;
+		    TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
+		    TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
+		    Tz = VADD(Tv, Ty);
+		    TB = VSUB(Tv, Ty);
+		    TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
+		    Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
+		    Tj = VADD(Tb, Ti);
+		    Tl = VSUB(Tb, Ti);
+		    T17 = VADD(Ts, Tz);
+		    TA = VFNMS(LDK(KP250000000), Tz, Ts);
+		    TS = VZMULI(TR, VADD(T4, Tj));
+		    Tk = VFNMS(LDK(KP250000000), Tj, T4);
+		    TC = VFNMS(LDK(KP559016994), TB, TA);
+		    TU = VFMA(LDK(KP559016994), TB, TA);
+		    TK = VFMA(LDK(KP559016994), Tl, Tk);
+		    Tm = VFNMS(LDK(KP559016994), Tl, Tk);
+		    TO = VZMUL(TN, VFMAI(TF, TC));
+		    TG = VZMUL(Tr, VFNMSI(TF, TC));
+		    T12 = VZMUL(T11, VFMAI(TV, TU));
+		    TW = VZMUL(TT, VFNMSI(TV, TU));
+		    T16 = VZMULI(T15, VFMAI(TL, TK));
+		    TM = VZMULI(TJ, VFNMSI(TL, TK));
+		    T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
+		    Tq = VZMULI(T1, VFMAI(Tp, Tm));
+		    TX = VADD(TS, TW);
+		    TY = VCONJ(VSUB(TW, TS));
+		    T18 = VADD(T16, T17);
+		    T19 = VCONJ(VSUB(T17, T16));
+		    TQ = VCONJ(VSUB(TO, TM));
+		    TP = VADD(TM, TO);
+		    T13 = VADD(T10, T12);
+		    T14 = VCONJ(VSUB(T12, T10));
+		    TI = VCONJ(VSUB(TG, Tq));
+		    TH = VADD(Tq, TG);
+		    ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
+		    ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
+		    ST(&(Rp[0]), T18, ms, &(Rp[0]));
+		    ST(&(Rm[0]), T19, -ms, &(Rm[0]));
+		    ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
+		    ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
+		    ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
+		    ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
+		    ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {33, 22, 28, 0} };
+
+void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include hc2cbv.h */
+
+/*
+ * This function contains 61 FP additions, 30 FP multiplications,
+ * (or, 55 additions, 24 multiplications, 6 fused multiply/add),
+ * 81 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "hc2cbv.h"
+
+static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
+     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
+	       V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
+	       V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
+	       V Tf, Th, Tg, TF, TG, Te, Tn;
+	       T2 = LD(&(Rp[0]), ms, &(Rp[0]));
+	       T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
+	       T4 = VCONJ(T3);
+	       T5 = VSUB(T2, T4);
+	       TE = VADD(T2, T4);
+	       T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
+	       T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
+	       T8 = VCONJ(T7);
+	       T9 = VSUB(T6, T8);
+	       Tx = VADD(T6, T8);
+	       Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
+	       Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
+	       Tk = VCONJ(Tj);
+	       Tm = VSUB(Tk, Tl);
+	       TB = VADD(Tk, Tl);
+	       Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
+	       Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
+	       Tb = VCONJ(Ta);
+	       Td = VSUB(Tb, Tc);
+	       Ty = VADD(Tb, Tc);
+	       Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
+	       Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
+	       Th = VCONJ(Tg);
+	       Ti = VSUB(Tf, Th);
+	       TA = VADD(Tf, Th);
+	       Ts = VSUB(T9, Td);
+	       Tt = VSUB(Ti, Tm);
+	       TC = VSUB(TA, TB);
+	       Tz = VSUB(Tx, Ty);
+	       TF = VADD(Tx, Ty);
+	       TG = VADD(TA, TB);
+	       TH = VADD(TF, TG);
+	       TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
+	       Te = VADD(T9, Td);
+	       Tn = VADD(Ti, Tm);
+	       To = VADD(Te, Tn);
+	       Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
+	       {
+		    V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
+		    V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
+		    V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
+		    T1c = VADD(TE, TH);
+		    TW = LDW(&(W[TWVL * 8]));
+		    TX = VZMULI(TW, VADD(T5, To));
+		    Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
+		    TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
+		    Tp = VFNMS(LDK(KP250000000), To, T5);
+		    Tr = VSUB(Tp, Tq);
+		    TP = VADD(Tq, Tp);
+		    T1 = LDW(&(W[TWVL * 4]));
+		    Tv = VZMULI(T1, VSUB(Tr, Tu));
+		    T1a = LDW(&(W[0]));
+		    T1b = VZMULI(T1a, VADD(TQ, TP));
+		    TO = LDW(&(W[TWVL * 16]));
+		    TR = VZMULI(TO, VSUB(TP, TQ));
+		    T14 = LDW(&(W[TWVL * 12]));
+		    T15 = VZMULI(T14, VADD(Tu, Tr));
+		    TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
+		    T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
+		    TI = VFNMS(LDK(KP250000000), TH, TE);
+		    TK = VSUB(TI, TJ);
+		    TZ = VADD(TJ, TI);
+		    Tw = LDW(&(W[TWVL * 2]));
+		    TL = VZMUL(Tw, VADD(TD, TK));
+		    T16 = LDW(&(W[TWVL * 10]));
+		    T17 = VZMUL(T16, VADD(T10, TZ));
+		    TS = LDW(&(W[TWVL * 14]));
+		    TT = VZMUL(TS, VSUB(TK, TD));
+		    TY = LDW(&(W[TWVL * 6]));
+		    T11 = VZMUL(TY, VSUB(TZ, T10));
+		    TM = VADD(Tv, TL);
+		    ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
+		    TU = VADD(TR, TT);
+		    ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
+		    T1e = VCONJ(VSUB(T1c, T1b));
+		    ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
+		    TN = VCONJ(VSUB(TL, Tv));
+		    ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
+		    T1d = VADD(T1b, T1c);
+		    ST(&(Rp[0]), T1d, ms, &(Rp[0]));
+		    T19 = VCONJ(VSUB(T17, T15));
+		    ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
+		    T13 = VCONJ(VSUB(T11, TX));
+		    ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
+		    TV = VCONJ(VSUB(TT, TR));
+		    ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
+		    T18 = VADD(T15, T17);
+		    ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
+		    T12 = VADD(TX, T11);
+		    ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(1, 1),
+     VTW(1, 2),
+     VTW(1, 3),
+     VTW(1, 4),
+     VTW(1, 5),
+     VTW(1, 6),
+     VTW(1, 7),
+     VTW(1, 8),
+     VTW(1, 9),
+     {TW_NEXT, VL, 0}
+};
+
+static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, {55, 24, 6, 0} };
+
+void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
+     X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
+}
+#endif				/* HAVE_FMA */