diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_9.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_9.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,224 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:39:45 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
+
+/*
+ * This function contains 38 FP additions, 30 FP multiplications,
+ * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
+ * 57 stack variables, 18 constants, and 18 memory accesses
+ */
+#include "r2cf.h"
+
+static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP907603734, +0.907603734547952313649323976213898122064543220);
+     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DK(KP347296355, +0.347296355333860697703433253538629592000751354);
+     DK(KP666666666, +0.666666666666666666666666666666666666666666667);
+     DK(KP879385241, +0.879385241571816768108218554649462939872416269);
+     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DK(KP673648177, +0.673648177666930348851716626769314796000375677);
+     DK(KP898197570, +0.898197570222573798468955502359086394667167570);
+     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP203604859, +0.203604859554852403062088995281827210665664861);
+     DK(KP152703644, +0.152703644666139302296566746461370407999248646);
+     DK(KP394930843, +0.394930843634698457567117349190734585290304520);
+     DK(KP968908795, +0.968908795874236621082202410917456709164223497);
+     DK(KP726681596, +0.726681596905677465811651808188092531873167623);
+     DK(KP586256827, +0.586256827714544512072145703099641959914944179);
+     DK(KP184792530, +0.184792530904095372701352047572203755870913560);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
+	       E Tp, Tz, Tw, Ts, TA;
+	       {
+		    E T1, T6, Tb, T7, T4, To, T8, Tc, Td, T2, T3;
+		    T1 = R0[0];
+		    T2 = R1[WS(rs, 1)];
+		    T3 = R0[WS(rs, 3)];
+		    T6 = R1[0];
+		    Tb = R0[WS(rs, 1)];
+		    T7 = R0[WS(rs, 2)];
+		    T4 = T2 + T3;
+		    To = T3 - T2;
+		    T8 = R1[WS(rs, 3)];
+		    Tc = R1[WS(rs, 2)];
+		    Td = R0[WS(rs, 4)];
+		    {
+			 E T5, T9, Tk, Te, Ti;
+			 T5 = T1 + T4;
+			 Tp = FNMS(KP500000000, T4, T1);
+			 T9 = T7 + T8;
+			 Tk = T7 - T8;
+			 Te = Tc + Td;
+			 Ti = Td - Tc;
+			 {
+			      E Tl, Ta, Tu, Tf, Th;
+			      Tl = FMS(KP500000000, T9, T6);
+			      Ta = T6 + T9;
+			      Tu = FMA(KP184792530, Tk, Ti);
+			      Tf = Tb + Te;
+			      Th = FNMS(KP500000000, Te, Tb);
+			      {
+				   E Tq, Ty, Tm, Tt;
+				   Tq = FMA(KP586256827, Tl, Ti);
+				   Ty = FMA(KP726681596, Tk, Tl);
+				   Tm = FNMS(KP968908795, Tl, Tk);
+				   Tt = FMA(KP394930843, Th, To);
+				   {
+					E Tj, Tx, Tg, Tv;
+					Tj = FNMS(KP152703644, Ti, Th);
+					Tx = FMA(KP203604859, Th, Ti);
+					Tg = Ta + Tf;
+					Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
+					Tv = FNMS(KP939692620, Tu, Tt);
+					{
+					     E TB, Tn, TC, Tr;
+					     TB = FMA(KP898197570, Ty, Tx);
+					     Tz = FNMS(KP898197570, Ty, Tx);
+					     Tw = FNMS(KP673648177, Tm, Tj);
+					     Tn = FMA(KP673648177, Tm, Tj);
+					     Cr[0] = T5 + Tg;
+					     Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
+					     Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
+					     Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
+					     TC = FMA(KP666666666, Tn, TB);
+					     Tr = FNMS(KP347296355, Tq, Tk);
+					     Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
+					     Ts = FNMS(KP907603734, Tr, Th);
+					}
+				   }
+			      }
+			 }
+		    }
+	       }
+	       Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
+	       TA = FNMS(KP500000000, Tz, Tw);
+	       Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
+	       Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 9, "r2cf_9", {12, 4, 26, 0}, &GENUS };
+
+void X(codelet_r2cf_9) (planner *p) {
+     X(kr2c_register) (p, r2cf_9, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include r2cf.h */
+
+/*
+ * This function contains 38 FP additions, 26 FP multiplications,
+ * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
+ * 36 stack variables, 14 constants, and 18 memory accesses
+ */
+#include "r2cf.h"
+
+static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
+     DK(KP296198132, +0.296198132726023843175338011893050938967728390);
+     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
+     DK(KP813797681, +0.813797681349373692844693217248393223289101568);
+     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
+     DK(KP150383733, +0.150383733180435296639271897612501926072238258);
+     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
+     DK(KP663413948, +0.663413948168938396205421319635891297216863310);
+     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
+     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
+     DK(KP556670399, +0.556670399226419366452912952047023132968291906);
+     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
+	       E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
+	       T1 = R0[0];
+	       T2 = R1[WS(rs, 1)];
+	       T3 = R0[WS(rs, 3)];
+	       T4 = T2 + T3;
+	       Tr = T3 - T2;
+	       {
+		    E T6, T7, T8, T9;
+		    T6 = R1[0];
+		    T7 = R0[WS(rs, 2)];
+		    T8 = R1[WS(rs, 3)];
+		    T9 = T7 + T8;
+		    Ta = T6 + T9;
+		    Tl = T8 - T7;
+		    Ti = FNMS(KP500000000, T9, T6);
+	       }
+	       {
+		    E Tb, Tc, Td, Te;
+		    Tb = R0[WS(rs, 1)];
+		    Tc = R1[WS(rs, 2)];
+		    Td = R0[WS(rs, 4)];
+		    Te = Tc + Td;
+		    Tf = Tb + Te;
+		    Tk = FNMS(KP500000000, Te, Tb);
+		    Tj = Td - Tc;
+	       }
+	       Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
+	       T5 = T1 + T4;
+	       Tg = Ta + Tf;
+	       Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
+	       Cr[0] = T5 + Tg;
+	       {
+		    E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
+		    Tt = KP866025403 * Tr;
+		    Th = FNMS(KP500000000, T4, T1);
+		    Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
+		    Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
+		    To = Tm + Tn;
+		    Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
+		    Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
+		    Ts = Tp + Tq;
+		    Cr[WS(csr, 1)] = Th + To;
+		    Ci[WS(csi, 1)] = Tt + Ts;
+		    Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
+		    Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
+		    Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
+		    Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 9, "r2cf_9", {21, 9, 17, 0}, &GENUS };
+
+void X(codelet_r2cf_9) (planner *p) {
+     X(kr2c_register) (p, r2cf_9, &desc);
+}
+
+#endif				/* HAVE_FMA */