Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_13.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/r2cf_13.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,365 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:46 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include r2cf.h */ + +/* + * This function contains 76 FP additions, 51 FP multiplications, + * (or, 31 additions, 6 multiplications, 45 fused multiply/add), + * 68 stack variables, 23 constants, and 26 memory accesses + */ +#include "r2cf.h" + +static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP516520780, +0.516520780623489722840901288569017135705033622); + DK(KP300462606, +0.300462606288665774426601772289207995520941381); + DK(KP581704778, +0.581704778510515730456870384989698884939833902); + DK(KP859542535, +0.859542535098774820163672132761689612766401925); + DK(KP769338817, +0.769338817572980603471413688209101117038278899); + DK(KP686558370, +0.686558370781754340655719594850823015421401653); + DK(KP514918778, +0.514918778086315755491789696138117261566051239); + DK(KP251768516, +0.251768516431883313623436926934233488546674281); + DK(KP503537032, +0.503537032863766627246873853868466977093348562); + DK(KP904176221, +0.904176221990848204433795481776887926501523162); + DK(KP575140729, +0.575140729474003121368385547455453388461001608); + DK(KP957805992, +0.957805992594665126462521754605754580515587217); + DK(KP600477271, +0.600477271932665282925769253334763009352012849); + DK(KP522026385, +0.522026385161275033714027226654165028300441940); + DK(KP301479260, +0.301479260047709873958013540496673347309208464); + DK(KP226109445, +0.226109445035782405468510155372505010481906348); + DK(KP853480001, +0.853480001859823990758994934970528322872359049); + DK(KP083333333, +0.083333333333333333333333333333333333333333333); + DK(KP612264650, +0.612264650376756543746494474777125408779395514); + DK(KP038632954, +0.038632954644348171955506895830342264440241080); + DK(KP302775637, +0.302775637731994646559610633735247973125648287); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { + E T15, T1a, T11, T17, T14, T1b; + { + E TN, TD, TV, TA, Tb, TZ, T12, TS, Tx, Tu, Ti, TU; + TN = R0[0]; + { + E T3, TP, Th, TB, Tp, Te, Tm, TC, Tr, T6, T9, Ts; + { + E Tn, Tf, Tg, T1, T2; + T1 = R0[WS(rs, 4)]; + T2 = R1[WS(rs, 2)]; + Tn = R0[WS(rs, 6)]; + Tf = R0[WS(rs, 5)]; + Tg = R0[WS(rs, 2)]; + T3 = T1 - T2; + TP = T1 + T2; + { + E Tk, To, Tc, Td; + Tk = R1[0]; + Th = Tf - Tg; + To = Tf + Tg; + Tc = R1[WS(rs, 4)]; + Td = R1[WS(rs, 1)]; + { + E T4, Tl, T5, T7, T8; + T4 = R1[WS(rs, 5)]; + TB = Tn + To; + Tp = FMS(KP500000000, To, Tn); + Tl = Td + Tc; + Te = Tc - Td; + T5 = R0[WS(rs, 3)]; + T7 = R1[WS(rs, 3)]; + T8 = R0[WS(rs, 1)]; + Tm = FNMS(KP500000000, Tl, Tk); + TC = Tk + Tl; + Tr = T4 + T5; + T6 = T4 - T5; + T9 = T7 - T8; + Ts = T7 + T8; + } + } + } + { + E TO, Ta, Tt, TQ; + TD = TB - TC; + TO = TC + TB; + Ta = T6 + T9; + TV = T6 - T9; + Tt = Tr - Ts; + TQ = Tr + Ts; + { + E TX, Tq, TR, TY; + TX = Tm - Tp; + Tq = Tm + Tp; + TA = T3 + Ta; + Tb = FNMS(KP500000000, Ta, T3); + TR = TP + TQ; + TY = FNMS(KP500000000, TQ, TP); + TZ = TX + TY; + T12 = TX - TY; + T15 = TO - TR; + TS = TO + TR; + Tx = FNMS(KP866025403, Tt, Tq); + Tu = FMA(KP866025403, Tt, Tq); + Ti = Te + Th; + TU = Th - Te; + } + } + } + Cr[0] = TN + TS; + { + E Tw, Tj, T13, TW; + Tw = FNMS(KP866025403, Ti, Tb); + Tj = FMA(KP866025403, Ti, Tb); + T13 = TU - TV; + TW = TU + TV; + { + E TE, TI, Tv, TF, TG, Ty; + TE = FMA(KP302775637, TD, TA); + TI = FNMS(KP302775637, TA, TD); + Tv = FMA(KP038632954, Tu, Tj); + TF = FNMS(KP038632954, Tj, Tu); + TG = FNMS(KP612264650, Tw, Tx); + Ty = FMA(KP612264650, Tx, Tw); + { + E TT, Tz, TK, TH, TM, T10, TL, TJ; + TT = FNMS(KP083333333, TS, TN); + Tz = FNMS(KP853480001, Ty, Tv); + TK = FMA(KP853480001, Ty, Tv); + TH = FNMS(KP853480001, TG, TF); + TM = FMA(KP853480001, TG, TF); + T1a = FNMS(KP226109445, TW, TZ); + T10 = FMA(KP301479260, TZ, TW); + TL = FNMS(KP522026385, Tz, TE); + Ci[WS(csi, 1)] = KP600477271 * (FMA(KP957805992, TE, Tz)); + TJ = FMA(KP522026385, TH, TI); + Ci[WS(csi, 5)] = -(KP600477271 * (FNMS(KP957805992, TI, TH))); + Ci[WS(csi, 4)] = -(KP575140729 * (FMA(KP904176221, TM, TL))); + Ci[WS(csi, 3)] = KP575140729 * (FNMS(KP904176221, TM, TL)); + Ci[WS(csi, 6)] = KP575140729 * (FMA(KP904176221, TK, TJ)); + Ci[WS(csi, 2)] = KP575140729 * (FNMS(KP904176221, TK, TJ)); + T11 = FMA(KP503537032, T10, TT); + T17 = FNMS(KP251768516, T10, TT); + } + T14 = FNMS(KP514918778, T13, T12); + T1b = FMA(KP686558370, T12, T13); + } + } + } + { + E T1e, T1c, T18, T16, T1d, T19; + T1e = FMA(KP769338817, T1b, T1a); + T1c = FNMS(KP769338817, T1b, T1a); + T18 = FNMS(KP859542535, T14, T15); + T16 = FMA(KP581704778, T15, T14); + T1d = FNMS(KP300462606, T18, T17); + T19 = FMA(KP300462606, T18, T17); + Cr[WS(csr, 1)] = FMA(KP516520780, T16, T11); + Cr[WS(csr, 5)] = FNMS(KP516520780, T16, T11); + Cr[WS(csr, 2)] = FMA(KP503537032, T1e, T1d); + Cr[WS(csr, 6)] = FNMS(KP503537032, T1e, T1d); + Cr[WS(csr, 3)] = FMA(KP503537032, T1c, T19); + Cr[WS(csr, 4)] = FNMS(KP503537032, T1c, T19); + } + } + } +} + +static const kr2c_desc desc = { 13, "r2cf_13", {31, 6, 45, 0}, &GENUS }; + +void X(codelet_r2cf_13) (planner *p) { + X(kr2c_register) (p, r2cf_13, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 13 -name r2cf_13 -include r2cf.h */ + +/* + * This function contains 76 FP additions, 34 FP multiplications, + * (or, 57 additions, 15 multiplications, 19 fused multiply/add), + * 55 stack variables, 20 constants, and 26 memory accesses + */ +#include "r2cf.h" + +static void r2cf_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP083333333, +0.083333333333333333333333333333333333333333333); + DK(KP075902986, +0.075902986037193865983102897245103540356428373); + DK(KP251768516, +0.251768516431883313623436926934233488546674281); + DK(KP503537032, +0.503537032863766627246873853868466977093348562); + DK(KP113854479, +0.113854479055790798974654345867655310534642560); + DK(KP265966249, +0.265966249214837287587521063842185948798330267); + DK(KP387390585, +0.387390585467617292130675966426762851778775217); + DK(KP300462606, +0.300462606288665774426601772289207995520941381); + DK(KP132983124, +0.132983124607418643793760531921092974399165133); + DK(KP258260390, +0.258260390311744861420450644284508567852516811); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP300238635, +0.300238635966332641462884626667381504676006424); + DK(KP011599105, +0.011599105605768290721655456654083252189827041); + DK(KP156891391, +0.156891391051584611046832726756003269660212636); + DK(KP256247671, +0.256247671582936600958684654061725059144125175); + DK(KP174138601, +0.174138601152135905005660794929264742616964676); + DK(KP575140729, +0.575140729474003121368385547455453388461001608); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { + E T13, Tb, Tm, TW, TX, T14, TU, T10, Tz, TB, Tu, TC, TR, T11; + T13 = R0[0]; + { + E Te, TO, Ta, Tv, To, T5, Tw, Tp, Th, Tr, Tk, Ts, Tl, TP, Tc; + E Td; + Tc = R0[WS(rs, 4)]; + Td = R1[WS(rs, 2)]; + Te = Tc - Td; + TO = Tc + Td; + { + E T6, T7, T8, T9; + T6 = R1[0]; + T7 = R1[WS(rs, 1)]; + T8 = R1[WS(rs, 4)]; + T9 = T7 + T8; + Ta = T6 + T9; + Tv = T7 - T8; + To = FNMS(KP500000000, T9, T6); + } + { + E T1, T2, T3, T4; + T1 = R0[WS(rs, 6)]; + T2 = R0[WS(rs, 5)]; + T3 = R0[WS(rs, 2)]; + T4 = T2 + T3; + T5 = T1 + T4; + Tw = T2 - T3; + Tp = FNMS(KP500000000, T4, T1); + } + { + E Tf, Tg, Ti, Tj; + Tf = R1[WS(rs, 5)]; + Tg = R0[WS(rs, 3)]; + Th = Tf - Tg; + Tr = Tf + Tg; + Ti = R1[WS(rs, 3)]; + Tj = R0[WS(rs, 1)]; + Tk = Ti - Tj; + Ts = Ti + Tj; + } + Tl = Th + Tk; + TP = Tr + Ts; + Tb = T5 - Ta; + Tm = Te + Tl; + TW = Ta + T5; + TX = TO + TP; + T14 = TW + TX; + { + E TS, TT, Tx, Ty; + TS = Tv + Tw; + TT = Th - Tk; + TU = TS - TT; + T10 = TS + TT; + Tx = KP866025403 * (Tv - Tw); + Ty = FNMS(KP500000000, Tl, Te); + Tz = Tx + Ty; + TB = Ty - Tx; + } + { + E Tq, Tt, TN, TQ; + Tq = To - Tp; + Tt = KP866025403 * (Tr - Ts); + Tu = Tq - Tt; + TC = Tq + Tt; + TN = To + Tp; + TQ = FNMS(KP500000000, TP, TO); + TR = TN - TQ; + T11 = TN + TQ; + } + } + Cr[0] = T13 + T14; + { + E Tn, TG, TE, TF, TJ, TM, TK, TL; + Tn = FNMS(KP174138601, Tm, KP575140729 * Tb); + TG = FMA(KP174138601, Tb, KP575140729 * Tm); + { + E TA, TD, TH, TI; + TA = FNMS(KP156891391, Tz, KP256247671 * Tu); + TD = FNMS(KP300238635, TC, KP011599105 * TB); + TE = TA + TD; + TF = KP1_732050807 * (TD - TA); + TH = FMA(KP300238635, TB, KP011599105 * TC); + TI = FMA(KP256247671, Tz, KP156891391 * Tu); + TJ = TH - TI; + TM = KP1_732050807 * (TI + TH); + } + Ci[WS(csi, 5)] = FMA(KP2_000000000, TE, Tn); + Ci[WS(csi, 1)] = FMA(KP2_000000000, TJ, TG); + TK = TG - TJ; + Ci[WS(csi, 4)] = TF - TK; + Ci[WS(csi, 3)] = TF + TK; + TL = Tn - TE; + Ci[WS(csi, 2)] = TL - TM; + Ci[WS(csi, 6)] = TL + TM; + } + { + E TZ, T1b, T19, T1e, T16, T1a, TV, TY, T1c, T1d; + TV = FNMS(KP132983124, TU, KP258260390 * TR); + TY = KP300462606 * (TW - TX); + TZ = FMA(KP2_000000000, TV, TY); + T1b = TY - TV; + { + E T17, T18, T12, T15; + T17 = FMA(KP387390585, TU, KP265966249 * TR); + T18 = FNMS(KP503537032, T11, KP113854479 * T10); + T19 = T17 - T18; + T1e = T17 + T18; + T12 = FMA(KP251768516, T10, KP075902986 * T11); + T15 = FNMS(KP083333333, T14, T13); + T16 = FMA(KP2_000000000, T12, T15); + T1a = T15 - T12; + } + Cr[WS(csr, 1)] = TZ + T16; + Cr[WS(csr, 5)] = T16 - TZ; + T1c = T1a - T1b; + Cr[WS(csr, 2)] = T19 + T1c; + Cr[WS(csr, 6)] = T1c - T19; + T1d = T1b + T1a; + Cr[WS(csr, 3)] = T1d - T1e; + Cr[WS(csr, 4)] = T1e + T1d; + } + } + } +} + +static const kr2c_desc desc = { 13, "r2cf_13", {57, 15, 19, 0}, &GENUS }; + +void X(codelet_r2cf_13) (planner *p) { + X(kr2c_register) (p, r2cf_13, &desc); +} + +#endif /* HAVE_FMA */