Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/hf_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hf_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,484 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:39:51 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include hf.h */ + +/* + * This function contains 96 FP additions, 88 FP multiplications, + * (or, 24 additions, 16 multiplications, 72 fused multiply/add), + * 69 stack variables, 10 constants, and 36 memory accesses + */ +#include "hf.h" + +static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP777861913, +0.777861913430206160028177977318626690410586096); + DK(KP852868531, +0.852868531952443209628250963940074071936020296); + DK(KP839099631, +0.839099631177280011763127298123181364687434283); + DK(KP492403876, +0.492403876506104029683371512294761506835321626); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP954188894, +0.954188894138671133499268364187245676532219158); + DK(KP363970234, +0.363970234266202361351047882776834043890471784); + DK(KP176326980, +0.176326980708464973471090386868618986121633062); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { + E T20, T1Z; + { + E T1, T1P, T1Q, T10, T1S, Te, TB, T1d, T1a, T19, T1M, TE, T1c, Tz, T1n; + E TC, TH, TK, T1k, TR, TG, TJ, TD; + T1 = cr[0]; + T1P = ci[0]; + { + E T9, Tc, TY, Ta, Tb, TX, T7; + { + E T3, T6, T8, TW, T4, T2, T5; + T3 = cr[WS(rs, 3)]; + T6 = ci[WS(rs, 3)]; + T2 = W[4]; + T9 = cr[WS(rs, 6)]; + Tc = ci[WS(rs, 6)]; + T8 = W[10]; + TW = T2 * T6; + T4 = T2 * T3; + T5 = W[5]; + TY = T8 * Tc; + Ta = T8 * T9; + Tb = W[11]; + TX = FNMS(T5, T3, TW); + T7 = FMA(T5, T6, T4); + } + { + E Th, Tk, Ti, T12, Tn, Tq, Tp, T17, Tx, T14, To, Tj, TZ, Td, Tg; + E TA, Tl, Ty; + Th = cr[WS(rs, 1)]; + TZ = FNMS(Tb, T9, TY); + Td = FMA(Tb, Tc, Ta); + Tk = ci[WS(rs, 1)]; + Tg = W[0]; + T1Q = TX + TZ; + T10 = TX - TZ; + T1S = Td - T7; + Te = T7 + Td; + Ti = Tg * Th; + T12 = Tg * Tk; + { + E Tt, Tw, Ts, Tv, T16, Tu, Tm; + Tt = cr[WS(rs, 7)]; + Tw = ci[WS(rs, 7)]; + Ts = W[12]; + Tv = W[13]; + Tn = cr[WS(rs, 4)]; + Tq = ci[WS(rs, 4)]; + T16 = Ts * Tw; + Tu = Ts * Tt; + Tm = W[6]; + Tp = W[7]; + T17 = FNMS(Tv, Tt, T16); + Tx = FMA(Tv, Tw, Tu); + T14 = Tm * Tq; + To = Tm * Tn; + } + Tj = W[1]; + TB = cr[WS(rs, 2)]; + { + E T15, Tr, T13, T18; + T15 = FNMS(Tp, Tn, T14); + Tr = FMA(Tp, Tq, To); + T13 = FNMS(Tj, Th, T12); + Tl = FMA(Tj, Tk, Ti); + T18 = T15 + T17; + T1d = T15 - T17; + Ty = Tr + Tx; + T1a = Tr - Tx; + T19 = FNMS(KP500000000, T18, T13); + T1M = T13 + T18; + TE = ci[WS(rs, 2)]; + } + T1c = FNMS(KP500000000, Ty, Tl); + Tz = Tl + Ty; + TA = W[2]; + { + E TN, TQ, TP, T1j, TO, TM; + TN = cr[WS(rs, 8)]; + TQ = ci[WS(rs, 8)]; + TM = W[14]; + T1n = TA * TE; + TC = TA * TB; + TP = W[15]; + T1j = TM * TQ; + TO = TM * TN; + TH = cr[WS(rs, 5)]; + TK = ci[WS(rs, 5)]; + T1k = FNMS(TP, TN, T1j); + TR = FMA(TP, TQ, TO); + TG = W[8]; + TJ = W[9]; + } + TD = W[3]; + } + } + { + E TV, Tf, T21, T1R, T1l, T1r, T1q, T1N, TT, T1g; + { + E T1o, TF, T1i, TL, T1h, TI, TS, T1p; + TV = FNMS(KP500000000, Te, T1); + Tf = T1 + Te; + T1h = TG * TK; + TI = TG * TH; + T1o = FNMS(TD, TB, T1n); + TF = FMA(TD, TE, TC); + T1i = FNMS(TJ, TH, T1h); + TL = FMA(TJ, TK, TI); + T21 = T1Q + T1P; + T1R = FNMS(KP500000000, T1Q, T1P); + T1p = T1i + T1k; + T1l = T1i - T1k; + TS = TL + TR; + T1r = TR - TL; + T1q = FNMS(KP500000000, T1p, T1o); + T1N = T1o + T1p; + TT = TF + TS; + T1g = FNMS(KP500000000, TS, TF); + } + { + E T11, T1z, T1E, T1D, T1X, T1T, T1I, T1C, T1Y, T1y, T1u, T24, TU; + T24 = TT - Tz; + TU = Tz + TT; + { + E T22, T1O, T1L, T23; + T22 = T1M + T1N; + T1O = T1M - T1N; + T11 = FNMS(KP866025403, T10, TV); + T1z = FMA(KP866025403, T10, TV); + T1L = FNMS(KP500000000, TU, Tf); + cr[0] = Tf + TU; + T23 = FNMS(KP500000000, T22, T21); + ci[WS(rs, 8)] = T22 + T21; + cr[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); + ci[WS(rs, 2)] = FNMS(KP866025403, T1O, T1L); + ci[WS(rs, 5)] = FMA(KP866025403, T24, T23); + cr[WS(rs, 6)] = FMS(KP866025403, T24, T23); + } + { + E T1B, T1m, T1w, T1f, T1s, T1A, T1b, T1e, T1x, T1t; + T1E = FNMS(KP866025403, T1a, T19); + T1b = FMA(KP866025403, T1a, T19); + T1e = FNMS(KP866025403, T1d, T1c); + T1D = FMA(KP866025403, T1d, T1c); + T1B = FMA(KP866025403, T1l, T1g); + T1m = FNMS(KP866025403, T1l, T1g); + T1X = FNMS(KP866025403, T1S, T1R); + T1T = FMA(KP866025403, T1S, T1R); + T1w = FNMS(KP176326980, T1b, T1e); + T1f = FMA(KP176326980, T1e, T1b); + T1s = FNMS(KP866025403, T1r, T1q); + T1A = FMA(KP866025403, T1r, T1q); + T1x = FMA(KP363970234, T1m, T1s); + T1t = FNMS(KP363970234, T1s, T1m); + T1I = FNMS(KP176326980, T1A, T1B); + T1C = FMA(KP176326980, T1B, T1A); + T1Y = FMA(KP954188894, T1x, T1w); + T1y = FNMS(KP954188894, T1x, T1w); + T20 = FMA(KP954188894, T1t, T1f); + T1u = FNMS(KP954188894, T1t, T1f); + } + { + E T1F, T1J, T1v, T1U, T1K; + ci[WS(rs, 6)] = FNMS(KP984807753, T1Y, T1X); + T1v = FNMS(KP492403876, T1u, T11); + cr[WS(rs, 2)] = FMA(KP984807753, T1u, T11); + T1F = FMA(KP839099631, T1E, T1D); + T1J = FNMS(KP839099631, T1D, T1E); + ci[WS(rs, 3)] = FNMS(KP852868531, T1y, T1v); + ci[0] = FMA(KP852868531, T1y, T1v); + T1U = FNMS(KP777861913, T1J, T1I); + T1K = FMA(KP777861913, T1J, T1I); + { + E T1G, T1W, T1V, T1H; + T1G = FMA(KP777861913, T1F, T1C); + T1W = FNMS(KP777861913, T1F, T1C); + T1Z = FMA(KP492403876, T1Y, T1X); + T1V = FMA(KP492403876, T1U, T1T); + ci[WS(rs, 7)] = FNMS(KP984807753, T1U, T1T); + T1H = FNMS(KP492403876, T1G, T1z); + cr[WS(rs, 1)] = FMA(KP984807753, T1G, T1z); + ci[WS(rs, 4)] = FMA(KP852868531, T1W, T1V); + cr[WS(rs, 7)] = FMS(KP852868531, T1W, T1V); + cr[WS(rs, 4)] = FMA(KP852868531, T1K, T1H); + ci[WS(rs, 1)] = FNMS(KP852868531, T1K, T1H); + } + } + } + } + } + cr[WS(rs, 8)] = -(FMA(KP852868531, T20, T1Z)); + cr[WS(rs, 5)] = FMS(KP852868531, T20, T1Z); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 9}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, {24, 16, 72, 0} }; + +void X(codelet_hf_9) (planner *p) { + X(khc2hc_register) (p, hf_9, &desc); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include hf.h */ + +/* + * This function contains 96 FP additions, 72 FP multiplications, + * (or, 60 additions, 36 multiplications, 36 fused multiply/add), + * 41 stack variables, 8 constants, and 36 memory accesses + */ +#include "hf.h" + +static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP342020143, +0.342020143325668733044099614682259580763083368); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { + E T1, T1B, TQ, T1A, Tc, TN, T1C, T1D, TL, T1x, T19, T1o, T1c, T1n, Tu; + E T1w, TW, T1k, T11, T1l; + { + E T6, TO, Tb, TP; + T1 = cr[0]; + T1B = ci[0]; + { + E T3, T5, T2, T4; + T3 = cr[WS(rs, 3)]; + T5 = ci[WS(rs, 3)]; + T2 = W[4]; + T4 = W[5]; + T6 = FMA(T2, T3, T4 * T5); + TO = FNMS(T4, T3, T2 * T5); + } + { + E T8, Ta, T7, T9; + T8 = cr[WS(rs, 6)]; + Ta = ci[WS(rs, 6)]; + T7 = W[10]; + T9 = W[11]; + Tb = FMA(T7, T8, T9 * Ta); + TP = FNMS(T9, T8, T7 * Ta); + } + TQ = KP866025403 * (TO - TP); + T1A = KP866025403 * (Tb - T6); + Tc = T6 + Tb; + TN = FNMS(KP500000000, Tc, T1); + T1C = TO + TP; + T1D = FNMS(KP500000000, T1C, T1B); + } + { + E Tz, T13, TE, T14, TJ, T15, TK, T16; + { + E Tw, Ty, Tv, Tx; + Tw = cr[WS(rs, 2)]; + Ty = ci[WS(rs, 2)]; + Tv = W[2]; + Tx = W[3]; + Tz = FMA(Tv, Tw, Tx * Ty); + T13 = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = cr[WS(rs, 5)]; + TD = ci[WS(rs, 5)]; + TA = W[8]; + TC = W[9]; + TE = FMA(TA, TB, TC * TD); + T14 = FNMS(TC, TB, TA * TD); + } + { + E TG, TI, TF, TH; + TG = cr[WS(rs, 8)]; + TI = ci[WS(rs, 8)]; + TF = W[14]; + TH = W[15]; + TJ = FMA(TF, TG, TH * TI); + T15 = FNMS(TH, TG, TF * TI); + } + TK = TE + TJ; + T16 = T14 + T15; + TL = Tz + TK; + T1x = T13 + T16; + { + E T17, T18, T1a, T1b; + T17 = FNMS(KP500000000, T16, T13); + T18 = KP866025403 * (TJ - TE); + T19 = T17 - T18; + T1o = T18 + T17; + T1a = FNMS(KP500000000, TK, Tz); + T1b = KP866025403 * (T14 - T15); + T1c = T1a - T1b; + T1n = T1a + T1b; + } + } + { + E Ti, TX, Tn, TT, Ts, TU, Tt, TY; + { + E Tf, Th, Te, Tg; + Tf = cr[WS(rs, 1)]; + Th = ci[WS(rs, 1)]; + Te = W[0]; + Tg = W[1]; + Ti = FMA(Te, Tf, Tg * Th); + TX = FNMS(Tg, Tf, Te * Th); + } + { + E Tk, Tm, Tj, Tl; + Tk = cr[WS(rs, 4)]; + Tm = ci[WS(rs, 4)]; + Tj = W[6]; + Tl = W[7]; + Tn = FMA(Tj, Tk, Tl * Tm); + TT = FNMS(Tl, Tk, Tj * Tm); + } + { + E Tp, Tr, To, Tq; + Tp = cr[WS(rs, 7)]; + Tr = ci[WS(rs, 7)]; + To = W[12]; + Tq = W[13]; + Ts = FMA(To, Tp, Tq * Tr); + TU = FNMS(Tq, Tp, To * Tr); + } + Tt = Tn + Ts; + TY = TT + TU; + Tu = Ti + Tt; + T1w = TX + TY; + { + E TS, TV, TZ, T10; + TS = FNMS(KP500000000, Tt, Ti); + TV = KP866025403 * (TT - TU); + TW = TS - TV; + T1k = TS + TV; + TZ = FNMS(KP500000000, TY, TX); + T10 = KP866025403 * (Ts - Tn); + T11 = TZ - T10; + T1l = T10 + TZ; + } + } + { + E T1y, Td, TM, T1v; + T1y = KP866025403 * (T1w - T1x); + Td = T1 + Tc; + TM = Tu + TL; + T1v = FNMS(KP500000000, TM, Td); + cr[0] = Td + TM; + cr[WS(rs, 3)] = T1v + T1y; + ci[WS(rs, 2)] = T1v - T1y; + } + { + E TR, T1I, T1e, T1K, T1i, T1H, T1f, T1J; + TR = TN - TQ; + T1I = T1D - T1A; + { + E T12, T1d, T1g, T1h; + T12 = FMA(KP173648177, TW, KP984807753 * T11); + T1d = FNMS(KP939692620, T1c, KP342020143 * T19); + T1e = T12 + T1d; + T1K = KP866025403 * (T1d - T12); + T1g = FNMS(KP984807753, TW, KP173648177 * T11); + T1h = FMA(KP342020143, T1c, KP939692620 * T19); + T1i = KP866025403 * (T1g + T1h); + T1H = T1g - T1h; + } + cr[WS(rs, 2)] = TR + T1e; + ci[WS(rs, 6)] = T1H + T1I; + T1f = FNMS(KP500000000, T1e, TR); + ci[0] = T1f - T1i; + ci[WS(rs, 3)] = T1f + T1i; + T1J = FMS(KP500000000, T1H, T1I); + cr[WS(rs, 5)] = T1J - T1K; + cr[WS(rs, 8)] = T1K + T1J; + } + { + E T1L, T1M, T1N, T1O; + T1L = KP866025403 * (TL - Tu); + T1M = T1C + T1B; + T1N = T1w + T1x; + T1O = FNMS(KP500000000, T1N, T1M); + cr[WS(rs, 6)] = T1L - T1O; + ci[WS(rs, 8)] = T1N + T1M; + ci[WS(rs, 5)] = T1L + T1O; + } + { + E T1j, T1E, T1q, T1z, T1u, T1F, T1r, T1G; + T1j = TN + TQ; + T1E = T1A + T1D; + { + E T1m, T1p, T1s, T1t; + T1m = FMA(KP766044443, T1k, KP642787609 * T1l); + T1p = FMA(KP173648177, T1n, KP984807753 * T1o); + T1q = T1m + T1p; + T1z = KP866025403 * (T1p - T1m); + T1s = FNMS(KP642787609, T1k, KP766044443 * T1l); + T1t = FNMS(KP984807753, T1n, KP173648177 * T1o); + T1u = KP866025403 * (T1s - T1t); + T1F = T1s + T1t; + } + cr[WS(rs, 1)] = T1j + T1q; + T1r = FNMS(KP500000000, T1q, T1j); + ci[WS(rs, 1)] = T1r - T1u; + cr[WS(rs, 4)] = T1r + T1u; + ci[WS(rs, 7)] = T1F + T1E; + T1G = FNMS(KP500000000, T1F, T1E); + cr[WS(rs, 7)] = T1z - T1G; + ci[WS(rs, 4)] = T1z + T1G; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 9}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, {60, 36, 36, 0} }; + +void X(codelet_hf_9) (planner *p) { + X(khc2hc_register) (p, hf_9, &desc); +} +#endif /* HAVE_FMA */