diff src/fftw-3.3.3/rdft/scalar/r2cf/hf_5.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hf_5.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,259 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:39:50 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_hc2hc.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
+
+/*
+ * This function contains 40 FP additions, 34 FP multiplications,
+ * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
+ * 43 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "hf.h"
+
+static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
+	       E T1, TJ, TK, TA, TR, Te, TC, Tk, TE, Tq;
+	       {
+		    E Tg, Tj, Tm, TB, Th, Tp, Tl, Ti, To, TD, Tn;
+		    T1 = cr[0];
+		    TJ = ci[0];
+		    {
+			 E T9, Tc, Ty, Ta, Tb, Tx, T7, Tf, Tz, Td;
+			 {
+			      E T3, T6, T8, Tw, T4, T2, T5;
+			      T3 = cr[WS(rs, 1)];
+			      T6 = ci[WS(rs, 1)];
+			      T2 = W[0];
+			      T9 = cr[WS(rs, 4)];
+			      Tc = ci[WS(rs, 4)];
+			      T8 = W[6];
+			      Tw = T2 * T6;
+			      T4 = T2 * T3;
+			      T5 = W[1];
+			      Ty = T8 * Tc;
+			      Ta = T8 * T9;
+			      Tb = W[7];
+			      Tx = FNMS(T5, T3, Tw);
+			      T7 = FMA(T5, T6, T4);
+			 }
+			 Tg = cr[WS(rs, 2)];
+			 Tz = FNMS(Tb, T9, Ty);
+			 Td = FMA(Tb, Tc, Ta);
+			 Tj = ci[WS(rs, 2)];
+			 Tf = W[2];
+			 TK = Tx + Tz;
+			 TA = Tx - Tz;
+			 TR = Td - T7;
+			 Te = T7 + Td;
+			 Tm = cr[WS(rs, 3)];
+			 TB = Tf * Tj;
+			 Th = Tf * Tg;
+			 Tp = ci[WS(rs, 3)];
+			 Tl = W[4];
+			 Ti = W[3];
+			 To = W[5];
+		    }
+		    TD = Tl * Tp;
+		    Tn = Tl * Tm;
+		    TC = FNMS(Ti, Tg, TB);
+		    Tk = FMA(Ti, Tj, Th);
+		    TE = FNMS(To, Tm, TD);
+		    Tq = FMA(To, Tp, Tn);
+	       }
+	       {
+		    E TG, TI, TO, TS, TU, Tu, TN, Tt, TL, TF;
+		    TL = TC + TE;
+		    TF = TC - TE;
+		    {
+			 E Tr, TQ, TM, Ts;
+			 Tr = Tk + Tq;
+			 TQ = Tk - Tq;
+			 TG = FMA(KP618033988, TF, TA);
+			 TI = FNMS(KP618033988, TA, TF);
+			 TO = TK - TL;
+			 TM = TK + TL;
+			 TS = FMA(KP618033988, TR, TQ);
+			 TU = FNMS(KP618033988, TQ, TR);
+			 Tu = Te - Tr;
+			 Ts = Te + Tr;
+			 ci[WS(rs, 4)] = TM + TJ;
+			 TN = FNMS(KP250000000, TM, TJ);
+			 cr[0] = T1 + Ts;
+			 Tt = FNMS(KP250000000, Ts, T1);
+		    }
+		    {
+			 E TT, TP, Tv, TH;
+			 TT = FMA(KP559016994, TO, TN);
+			 TP = FNMS(KP559016994, TO, TN);
+			 Tv = FMA(KP559016994, Tu, Tt);
+			 TH = FNMS(KP559016994, Tu, Tt);
+			 ci[WS(rs, 2)] = FMA(KP951056516, TS, TP);
+			 cr[WS(rs, 3)] = FMS(KP951056516, TS, TP);
+			 ci[WS(rs, 3)] = FMA(KP951056516, TU, TT);
+			 cr[WS(rs, 4)] = FMS(KP951056516, TU, TT);
+			 ci[WS(rs, 1)] = FMA(KP951056516, TI, TH);
+			 cr[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
+			 cr[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
+			 ci[0] = FNMS(KP951056516, TG, Tv);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 5},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {14, 8, 26, 0} };
+
+void X(codelet_hf_5) (planner *p) {
+     X(khc2hc_register) (p, hf_5, &desc);
+}
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 5 -dit -name hf_5 -include hf.h */
+
+/*
+ * This function contains 40 FP additions, 28 FP multiplications,
+ * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
+ * 29 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "hf.h"
+
+static void hf_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
+	       E T1, TE, Tu, Tx, TC, TB, TF, TG, TH, Tc, Tn, To;
+	       T1 = cr[0];
+	       TE = ci[0];
+	       {
+		    E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
+		    {
+			 E T3, T5, T2, T4;
+			 T3 = cr[WS(rs, 1)];
+			 T5 = ci[WS(rs, 1)];
+			 T2 = W[0];
+			 T4 = W[1];
+			 T6 = FMA(T2, T3, T4 * T5);
+			 Ts = FNMS(T4, T3, T2 * T5);
+		    }
+		    {
+			 E Tj, Tl, Ti, Tk;
+			 Tj = cr[WS(rs, 3)];
+			 Tl = ci[WS(rs, 3)];
+			 Ti = W[4];
+			 Tk = W[5];
+			 Tm = FMA(Ti, Tj, Tk * Tl);
+			 Tw = FNMS(Tk, Tj, Ti * Tl);
+		    }
+		    {
+			 E T8, Ta, T7, T9;
+			 T8 = cr[WS(rs, 4)];
+			 Ta = ci[WS(rs, 4)];
+			 T7 = W[6];
+			 T9 = W[7];
+			 Tb = FMA(T7, T8, T9 * Ta);
+			 Tt = FNMS(T9, T8, T7 * Ta);
+		    }
+		    {
+			 E Te, Tg, Td, Tf;
+			 Te = cr[WS(rs, 2)];
+			 Tg = ci[WS(rs, 2)];
+			 Td = W[2];
+			 Tf = W[3];
+			 Th = FMA(Td, Te, Tf * Tg);
+			 Tv = FNMS(Tf, Te, Td * Tg);
+		    }
+		    Tu = Ts - Tt;
+		    Tx = Tv - Tw;
+		    TC = Th - Tm;
+		    TB = Tb - T6;
+		    TF = Ts + Tt;
+		    TG = Tv + Tw;
+		    TH = TF + TG;
+		    Tc = T6 + Tb;
+		    Tn = Th + Tm;
+		    To = Tc + Tn;
+	       }
+	       cr[0] = T1 + To;
+	       {
+		    E Ty, TA, Tr, Tz, Tp, Tq;
+		    Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
+		    TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
+		    Tp = KP559016994 * (Tc - Tn);
+		    Tq = FNMS(KP250000000, To, T1);
+		    Tr = Tp + Tq;
+		    Tz = Tq - Tp;
+		    ci[0] = Tr - Ty;
+		    ci[WS(rs, 1)] = Tz + TA;
+		    cr[WS(rs, 1)] = Tr + Ty;
+		    cr[WS(rs, 2)] = Tz - TA;
+	       }
+	       ci[WS(rs, 4)] = TH + TE;
+	       {
+		    E TD, TL, TK, TM, TI, TJ;
+		    TD = FMA(KP587785252, TB, KP951056516 * TC);
+		    TL = FNMS(KP587785252, TC, KP951056516 * TB);
+		    TI = FNMS(KP250000000, TH, TE);
+		    TJ = KP559016994 * (TF - TG);
+		    TK = TI - TJ;
+		    TM = TJ + TI;
+		    cr[WS(rs, 3)] = TD - TK;
+		    ci[WS(rs, 3)] = TL + TM;
+		    ci[WS(rs, 2)] = TD + TK;
+		    cr[WS(rs, 4)] = TL - TM;
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 5},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 5, "hf_5", twinstr, &GENUS, {26, 14, 14, 0} };
+
+void X(codelet_hf_5) (planner *p) {
+     X(khc2hc_register) (p, hf_5, &desc);
+}
+#endif				/* HAVE_FMA */