Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_32.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft_32.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,1943 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:40:46 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include hc2cf.h */ + +/* + * This function contains 498 FP additions, 324 FP multiplications, + * (or, 300 additions, 126 multiplications, 198 fused multiply/add), + * 172 stack variables, 8 constants, and 128 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { + E T9X, Ta0; + { + E T3B, T89, T61, T8l, T2F, T7p, T8t, T4B, T7I, T5e, T7L, T1n, T7R, T5E, T82; + E T4u, T3m, T8k, T5W, T8a, T2r, T8u, T4G, T7q, T59, T7K, T7H, T12, T5z, T81; + E T7Q, T4h, T4Y, T7D, T7A, Tl, T5o, T3Q, T84, T7V, T2V, T4M, T7t, T7s, T1K; + E T5L, T8e, T8n, T38, T7v, T4R, T7w, T25, T5Q, T8h, T8o, T3V, T3S, T5p, T3T; + E T41, Tz, T3Y, TE, TA, T51, T5r, T3Z, Tv, T50, TB, T3U, T40; + { + E T49, T46, T5v, T47, T4f, TV, T4c, T10, TW, T57, T5x, T4d, TR, T56, TX; + E T48, T4e; + { + E T4m, T4j, T5A, T4k, T4s, T1g, T4p, T1l, T1h, T5c, T5C, T4q, T1c, T5b, T1i; + E T4l, T4r; + { + E T2E, T4y, T2B, T4A; + { + E T3y, T3z, T3t, T5Z, T3x, T2v, T3r, T3q, T3n, T2A, T3o, T2s; + { + E T2C, T2D, T3w, T3u, T3v; + T2C = Ip[0]; + T2D = Im[0]; + T3u = Rm[0]; + T3v = Rp[0]; + T3y = W[1]; + T3z = T2C + T2D; + T2E = T2C - T2D; + T4y = T3v + T3u; + T3w = T3u - T3v; + T3t = W[0]; + { + E T2y, T2z, T2t, T2u; + T2t = Ip[WS(rs, 8)]; + T2u = Im[WS(rs, 8)]; + T5Z = T3y * T3w; + T3x = T3t * T3w; + T2y = Rp[WS(rs, 8)]; + T2v = T2t - T2u; + T3r = T2t + T2u; + T2z = Rm[WS(rs, 8)]; + T3q = W[33]; + T3n = W[32]; + T2A = T2y + T2z; + T3o = T2z - T2y; + T2s = W[30]; + } + } + { + E T3A, T5X, T4z, T2w, T3s, T3p, T5Y, T60, T2x; + T3A = FNMS(T3y, T3z, T3x); + T3p = T3n * T3o; + T5X = T3q * T3o; + T4z = T2s * T2A; + T2w = T2s * T2v; + T3s = FNMS(T3q, T3r, T3p); + T5Y = FMA(T3n, T3r, T5X); + T60 = FMA(T3t, T3z, T5Z); + T2x = W[31]; + T3B = T3s + T3A; + T89 = T3A - T3s; + T61 = T5Y + T60; + T8l = T60 - T5Y; + T2B = FNMS(T2x, T2A, T2w); + T4A = FMA(T2x, T2v, T4z); + } + } + { + E T16, T1b, T17, T5a, T1d, T4o, T18; + { + E T19, T1a, T13, T4i, T14, T15; + T14 = Ip[WS(rs, 3)]; + T15 = Im[WS(rs, 3)]; + T2F = T2B + T2E; + T7p = T2E - T2B; + T8t = T4y - T4A; + T4B = T4y + T4A; + T4m = T14 + T15; + T16 = T14 - T15; + T19 = Rp[WS(rs, 3)]; + T1a = Rm[WS(rs, 3)]; + T13 = W[10]; + T4i = W[12]; + { + E T1e, T1f, T1j, T1k; + T1e = Ip[WS(rs, 11)]; + T4j = T19 - T1a; + T1b = T19 + T1a; + T17 = T13 * T16; + T5A = T4i * T4m; + T4k = T4i * T4j; + T5a = T13 * T1b; + T1f = Im[WS(rs, 11)]; + T1j = Rp[WS(rs, 11)]; + T1k = Rm[WS(rs, 11)]; + T1d = W[42]; + T4s = T1e + T1f; + T1g = T1e - T1f; + T4p = T1j - T1k; + T1l = T1j + T1k; + T4o = W[44]; + T1h = T1d * T1g; + } + } + T18 = W[11]; + T5c = T1d * T1l; + T5C = T4o * T4s; + T4q = T4o * T4p; + T1c = FNMS(T18, T1b, T17); + T5b = FMA(T18, T16, T5a); + T1i = W[43]; + T4l = W[13]; + T4r = W[45]; + } + } + { + E T4D, T2g, T2q, T4F; + { + E T3d, T3e, T2a, T2f, T3a, T5S, T3c, T4C, T2b, T3j, T2k, T3k, T2p, T3h, T3g; + E T2h, T5U, T3b, T27; + { + E T28, T29, T2d, T2e, T5d, T1m; + T28 = Ip[WS(rs, 4)]; + T5d = FMA(T1i, T1g, T5c); + T1m = FNMS(T1i, T1l, T1h); + { + E T5B, T4n, T5D, T4t; + T5B = FNMS(T4l, T4j, T5A); + T4n = FMA(T4l, T4m, T4k); + T5D = FNMS(T4r, T4p, T5C); + T4t = FMA(T4r, T4s, T4q); + T7I = T5b - T5d; + T5e = T5b + T5d; + T7L = T1c - T1m; + T1n = T1c + T1m; + T7R = T5D - T5B; + T5E = T5B + T5D; + T82 = T4t - T4n; + T4u = T4n + T4t; + T29 = Im[WS(rs, 4)]; + } + T2d = Rp[WS(rs, 4)]; + T2e = Rm[WS(rs, 4)]; + T3d = W[17]; + T3e = T28 + T29; + T2a = T28 - T29; + T3b = T2e - T2d; + T2f = T2d + T2e; + T3a = W[16]; + T27 = W[14]; + T5S = T3d * T3b; + } + { + E T2i, T2j, T2n, T2o; + T2i = Ip[WS(rs, 12)]; + T3c = T3a * T3b; + T4C = T27 * T2f; + T2b = T27 * T2a; + T2j = Im[WS(rs, 12)]; + T2n = Rp[WS(rs, 12)]; + T2o = Rm[WS(rs, 12)]; + T3j = W[49]; + T2k = T2i - T2j; + T3k = T2i + T2j; + T2p = T2n + T2o; + T3h = T2o - T2n; + T3g = W[48]; + T2h = W[46]; + T5U = T3j * T3h; + } + { + E T3f, T3i, T4E, T2l; + T3f = FNMS(T3d, T3e, T3c); + T3i = T3g * T3h; + T4E = T2h * T2p; + T2l = T2h * T2k; + { + E T5T, T3l, T5V, T2c, T2m; + T5T = FMA(T3a, T3e, T5S); + T3l = FNMS(T3j, T3k, T3i); + T5V = FMA(T3g, T3k, T5U); + T2c = W[15]; + T2m = W[47]; + T3m = T3f + T3l; + T8k = T3f - T3l; + T5W = T5T + T5V; + T8a = T5T - T5V; + T4D = FMA(T2c, T2a, T4C); + T2g = FNMS(T2c, T2f, T2b); + T2q = FNMS(T2m, T2p, T2l); + T4F = FMA(T2m, T2k, T4E); + } + } + } + { + E TL, TQ, TM, T55, TS, T4b, TN; + { + E TO, TP, TI, T45, TJ, TK; + TJ = Ip[WS(rs, 15)]; + TK = Im[WS(rs, 15)]; + T2r = T2g + T2q; + T8u = T2g - T2q; + T4G = T4D + T4F; + T7q = T4D - T4F; + T49 = TJ + TK; + TL = TJ - TK; + TO = Rp[WS(rs, 15)]; + TP = Rm[WS(rs, 15)]; + TI = W[58]; + T45 = W[60]; + { + E TT, TU, TY, TZ; + TT = Ip[WS(rs, 7)]; + T46 = TO - TP; + TQ = TO + TP; + TM = TI * TL; + T5v = T45 * T49; + T47 = T45 * T46; + T55 = TI * TQ; + TU = Im[WS(rs, 7)]; + TY = Rp[WS(rs, 7)]; + TZ = Rm[WS(rs, 7)]; + TS = W[26]; + T4f = TT + TU; + TV = TT - TU; + T4c = TY - TZ; + T10 = TY + TZ; + T4b = W[28]; + TW = TS * TV; + } + } + TN = W[59]; + T57 = TS * T10; + T5x = T4b * T4f; + T4d = T4b * T4c; + TR = FNMS(TN, TQ, TM); + T56 = FMA(TN, TL, T55); + TX = W[27]; + T48 = W[61]; + T4e = W[29]; + } + } + } + { + E T8c, T8d, T8f, T8g; + { + E T3I, T3F, T5k, T3G, T3O, Te, T3L, Tj, Tf, T4W, T5m, T3M, Ta, T4V, Tg; + E T3H, T3N; + { + E T4, T9, T5, T4U, Tb, T3K, T1, T3E, T6; + { + E T2, T3, T7, T8, T58, T11; + T2 = Ip[WS(rs, 1)]; + T58 = FMA(TX, TV, T57); + T11 = FNMS(TX, T10, TW); + { + E T5w, T4a, T5y, T4g; + T5w = FNMS(T48, T46, T5v); + T4a = FMA(T48, T49, T47); + T5y = FNMS(T4e, T4c, T5x); + T4g = FMA(T4e, T4f, T4d); + T59 = T56 + T58; + T7K = T56 - T58; + T7H = TR - T11; + T12 = TR + T11; + T5z = T5w + T5y; + T81 = T5w - T5y; + T7Q = T4g - T4a; + T4h = T4a + T4g; + T3 = Im[WS(rs, 1)]; + } + T7 = Rp[WS(rs, 1)]; + T8 = Rm[WS(rs, 1)]; + T1 = W[2]; + T3I = T2 + T3; + T4 = T2 - T3; + T3F = T7 - T8; + T9 = T7 + T8; + T3E = W[4]; + T5 = T1 * T4; + } + { + E Tc, Td, Th, Ti; + Tc = Ip[WS(rs, 9)]; + T4U = T1 * T9; + T5k = T3E * T3I; + T3G = T3E * T3F; + Td = Im[WS(rs, 9)]; + Th = Rp[WS(rs, 9)]; + Ti = Rm[WS(rs, 9)]; + Tb = W[34]; + T3O = Tc + Td; + Te = Tc - Td; + T3L = Th - Ti; + Tj = Th + Ti; + T3K = W[36]; + Tf = Tb * Te; + } + T6 = W[3]; + T4W = Tb * Tj; + T5m = T3K * T3O; + T3M = T3K * T3L; + Ta = FNMS(T6, T9, T5); + T4V = FMA(T6, T4, T4U); + Tg = W[35]; + T3H = W[5]; + T3N = W[37]; + } + { + E T1t, T2N, T2M, T2J, T1y, T2L, T5H, T4I, T1u, T2S, T1D, T2T, T1I, T2Q, T2P; + E T1A, T5J; + { + E T2K, T1q, T1w, T1x; + { + E T1r, T7U, T7T, T1s, T4X, Tk; + T1r = Ip[WS(rs, 2)]; + T4X = FMA(Tg, Te, T4W); + Tk = FNMS(Tg, Tj, Tf); + { + E T5l, T3J, T5n, T3P; + T5l = FNMS(T3H, T3F, T5k); + T3J = FMA(T3H, T3I, T3G); + T5n = FNMS(T3N, T3L, T5m); + T3P = FMA(T3N, T3O, T3M); + T4Y = T4V + T4X; + T7D = T4V - T4X; + T7A = Ta - Tk; + Tl = Ta + Tk; + T7U = T5l - T5n; + T5o = T5l + T5n; + T7T = T3P - T3J; + T3Q = T3J + T3P; + T1s = Im[WS(rs, 2)]; + } + T1w = Rp[WS(rs, 2)]; + T84 = T7U + T7T; + T7V = T7T - T7U; + T1t = T1r - T1s; + T2N = T1r + T1s; + T1x = Rm[WS(rs, 2)]; + } + T2M = W[9]; + T2J = W[8]; + T1y = T1w + T1x; + T2K = T1x - T1w; + T1q = W[6]; + { + E T1B, T1C, T1G, T1H; + T1B = Ip[WS(rs, 10)]; + T2L = T2J * T2K; + T5H = T2M * T2K; + T4I = T1q * T1y; + T1u = T1q * T1t; + T1C = Im[WS(rs, 10)]; + T1G = Rp[WS(rs, 10)]; + T1H = Rm[WS(rs, 10)]; + T2S = W[41]; + T1D = T1B - T1C; + T2T = T1B + T1C; + T1I = T1G + T1H; + T2Q = T1H - T1G; + T2P = W[40]; + T1A = W[38]; + T5J = T2S * T2Q; + } + } + { + E T2R, T4K, T1E, T1z, T4J, T1F, T1v, T2O, T2U; + T1v = W[7]; + T2R = T2P * T2Q; + T4K = T1A * T1I; + T1E = T1A * T1D; + T1z = FNMS(T1v, T1y, T1u); + T4J = FMA(T1v, T1t, T4I); + T1F = W[39]; + T2O = FNMS(T2M, T2N, T2L); + T2U = FNMS(T2S, T2T, T2R); + { + E T5I, T4L, T1J, T5K; + T5I = FMA(T2J, T2N, T5H); + T4L = FMA(T1F, T1D, T4K); + T1J = FNMS(T1F, T1I, T1E); + T8c = T2O - T2U; + T2V = T2O + T2U; + T5K = FMA(T2P, T2T, T5J); + T4M = T4J + T4L; + T7t = T4J - T4L; + T7s = T1z - T1J; + T1K = T1z + T1J; + T8d = T5I - T5K; + T5L = T5I + T5K; + } + } + } + } + { + E T2Z, T30, T1O, T1T, T2W, T5M, T2Y, T4N, T1P, T35, T1Y, T36, T23, T33, T32; + E T1V, T5O, T2X, T1L; + { + E T1M, T1N, T1R, T1S; + T1M = Ip[WS(rs, 14)]; + T8e = T8c - T8d; + T8n = T8c + T8d; + T1N = Im[WS(rs, 14)]; + T1R = Rp[WS(rs, 14)]; + T1S = Rm[WS(rs, 14)]; + T2Z = W[57]; + T30 = T1M + T1N; + T1O = T1M - T1N; + T2X = T1S - T1R; + T1T = T1R + T1S; + T2W = W[56]; + T1L = W[54]; + T5M = T2Z * T2X; + } + { + E T1W, T1X, T21, T22; + T1W = Ip[WS(rs, 6)]; + T2Y = T2W * T2X; + T4N = T1L * T1T; + T1P = T1L * T1O; + T1X = Im[WS(rs, 6)]; + T21 = Rp[WS(rs, 6)]; + T22 = Rm[WS(rs, 6)]; + T35 = W[25]; + T1Y = T1W - T1X; + T36 = T1W + T1X; + T23 = T21 + T22; + T33 = T22 - T21; + T32 = W[24]; + T1V = W[22]; + T5O = T35 * T33; + } + { + E T34, T4P, T1Z, T1U, T4O, T20, T1Q, T31, T37; + T1Q = W[55]; + T34 = T32 * T33; + T4P = T1V * T23; + T1Z = T1V * T1Y; + T1U = FNMS(T1Q, T1T, T1P); + T4O = FMA(T1Q, T1O, T4N); + T20 = W[23]; + T31 = FNMS(T2Z, T30, T2Y); + T37 = FNMS(T35, T36, T34); + { + E T5N, T4Q, T24, T5P; + T5N = FMA(T2W, T30, T5M); + T4Q = FMA(T20, T1Y, T4P); + T24 = FNMS(T20, T23, T1Z); + T8f = T31 - T37; + T38 = T31 + T37; + T5P = FMA(T32, T36, T5O); + T7v = T4O - T4Q; + T4R = T4O + T4Q; + T7w = T1U - T24; + T25 = T1U + T24; + T8g = T5N - T5P; + T5Q = T5N + T5P; + } + } + } + { + E Tp, Tu, Tq, T4Z, Tw, T3X, Tm, T3R, Tr; + { + E Tn, To, Ts, Tt; + Tn = Ip[WS(rs, 5)]; + T8h = T8f + T8g; + T8o = T8g - T8f; + To = Im[WS(rs, 5)]; + Ts = Rp[WS(rs, 5)]; + Tt = Rm[WS(rs, 5)]; + Tm = W[18]; + T3V = Tn + To; + Tp = Tn - To; + T3S = Ts - Tt; + Tu = Ts + Tt; + T3R = W[20]; + Tq = Tm * Tp; + } + { + E Tx, Ty, TC, TD; + Tx = Ip[WS(rs, 13)]; + T4Z = Tm * Tu; + T5p = T3R * T3V; + T3T = T3R * T3S; + Ty = Im[WS(rs, 13)]; + TC = Rp[WS(rs, 13)]; + TD = Rm[WS(rs, 13)]; + Tw = W[50]; + T41 = Tx + Ty; + Tz = Tx - Ty; + T3Y = TC - TD; + TE = TC + TD; + T3X = W[52]; + TA = Tw * Tz; + } + Tr = W[19]; + T51 = Tw * TE; + T5r = T3X * T41; + T3Z = T3X * T3Y; + Tv = FNMS(Tr, Tu, Tq); + T50 = FMA(Tr, Tp, T4Z); + TB = W[51]; + T3U = W[21]; + T40 = W[53]; + } + } + } + { + E T6y, T7B, T7E, T6u, T6S, T85, T7Y, T6s, T6v, T6x, T6R, T6r, T6F, T6D, T6C; + E T6G, T6M, T6K, T6J, T6N, T6l, T6o, T7j, T7m; + { + E T6i, T1p, T68, T2H, T67, T5g, T6h, T4T, T4w, T5G, T6d, T3D, T6c, T6m, T63; + E T6e; + { + E T5t, T43, T26, T2G, T54, T5f, T4H, T4S; + { + E T1o, T53, T7W, T7X, TH, T52, TF, T5q; + T6y = T12 - T1n; + T1o = T12 + T1n; + T52 = FMA(TB, Tz, T51); + TF = FNMS(TB, TE, TA); + T5q = FNMS(T3U, T3S, T5p); + { + E T3W, T5s, T42, TG; + T3W = FMA(T3U, T3V, T3T); + T5s = FNMS(T40, T3Y, T5r); + T42 = FMA(T40, T41, T3Z); + T7B = T50 - T52; + T53 = T50 + T52; + T7E = Tv - TF; + TG = Tv + TF; + T7W = T5s - T5q; + T5t = T5q + T5s; + T7X = T3W - T42; + T43 = T3W + T42; + TH = Tl + TG; + T6u = Tl - TG; + } + T6S = T1K - T25; + T26 = T1K + T25; + T85 = T7W - T7X; + T7Y = T7W + T7X; + T6i = TH - T1o; + T1p = TH + T1o; + T2G = T2r + T2F; + T6s = T2F - T2r; + T6v = T4Y - T53; + T54 = T4Y + T53; + T5f = T59 + T5e; + T6x = T59 - T5e; + } + T6R = T4B - T4G; + T4H = T4B + T4G; + T68 = T2G - T26; + T2H = T26 + T2G; + T67 = T5f - T54; + T5g = T54 + T5f; + T4S = T4M + T4R; + T6r = T4R - T4M; + { + E T5u, T6b, T5F, T44, T4v; + T6F = T43 - T3Q; + T44 = T3Q + T43; + T4v = T4h + T4u; + T6D = T4u - T4h; + T6C = T5t - T5o; + T5u = T5o + T5t; + T6h = T4H - T4S; + T4T = T4H + T4S; + T6b = T44 - T4v; + T4w = T44 + T4v; + T6G = T5z - T5E; + T5F = T5z + T5E; + { + E T5R, T62, T39, T3C, T6a; + T6M = T2V - T38; + T39 = T2V + T38; + T3C = T3m + T3B; + T6K = T3B - T3m; + T6a = T5F - T5u; + T5G = T5u + T5F; + T6J = T5Q - T5L; + T5R = T5L + T5Q; + T6d = T3C - T39; + T3D = T39 + T3C; + T6N = T61 - T5W; + T62 = T5W + T61; + T6c = T6a + T6b; + T6m = T6a - T6b; + T63 = T5R + T62; + T6e = T62 - T5R; + } + } + } + { + E T5j, T6n, T6f, T64; + { + E T5i, T5h, T65, T66, T2I, T4x; + T5j = T2H - T1p; + T2I = T1p + T2H; + T4x = T3D - T4w; + T5i = T4w + T3D; + T6n = T6d + T6e; + T6f = T6d - T6e; + T5h = T4T - T5g; + T65 = T4T + T5g; + Im[WS(rs, 15)] = KP500000000 * (T4x - T2I); + Ip[0] = KP500000000 * (T2I + T4x); + T66 = T5G + T63; + T64 = T5G - T63; + Rp[0] = KP500000000 * (T65 + T66); + Rm[WS(rs, 15)] = KP500000000 * (T65 - T66); + Rp[WS(rs, 8)] = KP500000000 * (T5h + T5i); + Rm[WS(rs, 7)] = KP500000000 * (T5h - T5i); + } + { + E T6k, T6j, T6p, T6q, T69, T6g; + T6l = T68 - T67; + T69 = T67 + T68; + T6g = T6c + T6f; + T6k = T6f - T6c; + T6j = T6h - T6i; + T6p = T6h + T6i; + Im[WS(rs, 7)] = KP500000000 * (T64 - T5j); + Ip[WS(rs, 8)] = KP500000000 * (T5j + T64); + Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6g, T69))); + Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6g, T69)); + T6q = T6m + T6n; + T6o = T6m - T6n; + Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6q, T6p)); + Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T6q, T6p)); + Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6k, T6j)); + Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6k, T6j)); + } + } + } + { + E T75, T6t, T7f, T6T, T76, T6W, T7g, T6A, T7b, T6L, T7a, T7k, T70, T6I, T6U; + E T6w; + Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6o, T6l))); + Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6o, T6l)); + T75 = T6s - T6r; + T6t = T6r + T6s; + T7f = T6R - T6S; + T6T = T6R + T6S; + T6U = T6v + T6u; + T6w = T6u - T6v; + { + E T78, T6E, T6V, T6z, T79, T6H; + T6V = T6x - T6y; + T6z = T6x + T6y; + T78 = T6C - T6D; + T6E = T6C + T6D; + T76 = T6V - T6U; + T6W = T6U + T6V; + T7g = T6w - T6z; + T6A = T6w + T6z; + T79 = T6G - T6F; + T6H = T6F + T6G; + T7b = T6K - T6J; + T6L = T6J + T6K; + T7a = FMA(KP414213562, T79, T78); + T7k = FNMS(KP414213562, T78, T79); + T70 = FNMS(KP414213562, T6E, T6H); + T6I = FMA(KP414213562, T6H, T6E); + } + { + E T6Z, T6B, T73, T6X, T7c, T6O; + T6Z = FNMS(KP707106781, T6A, T6t); + T6B = FMA(KP707106781, T6A, T6t); + T73 = FMA(KP707106781, T6W, T6T); + T6X = FNMS(KP707106781, T6W, T6T); + T7c = T6N - T6M; + T6O = T6M + T6N; + { + E T7i, T7h, T7n, T7o; + { + E T77, T7l, T71, T6P, T7e, T7d; + T7j = FMA(KP707106781, T76, T75); + T77 = FNMS(KP707106781, T76, T75); + T7d = FMA(KP414213562, T7c, T7b); + T7l = FNMS(KP414213562, T7b, T7c); + T71 = FMA(KP414213562, T6L, T6O); + T6P = FNMS(KP414213562, T6O, T6L); + T7e = T7a - T7d; + T7i = T7a + T7d; + T7h = FMA(KP707106781, T7g, T7f); + T7n = FNMS(KP707106781, T7g, T7f); + { + E T72, T74, T6Y, T6Q; + T72 = T70 - T71; + T74 = T70 + T71; + T6Y = T6P - T6I; + T6Q = T6I + T6P; + Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7e, T77))); + Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7e, T77)); + Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T72, T6Z))); + Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T72, T6Z)); + Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T74, T73)); + Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T74, T73)); + Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T6Y, T6X)); + Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T6Y, T6X)); + Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T6Q, T6B))); + Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T6Q, T6B)); + T7o = T7k + T7l; + T7m = T7k - T7l; + } + } + Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7o, T7n)); + Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7o, T7n)); + Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7i, T7h)); + Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7i, T7h)); + } + } + } + { + E T9x, T9T, T8L, T7z, T97, T9J, T8V, T8z, T8M, T8C, T8W, T7O, T9O, T9Y, T9E; + E T9t, T8Q, T90, T8G, T88, T8p, T8m, T9K, T9A, T9U, T9e, T8R, T8j, T9R, T9Z; + E T9F, T9m; + { + E T9c, T9b, T99, T98, T7S, T86, T83, T9q, T9M, T9p, T9r, T7Z, T9z, T9a; + { + E T95, T7r, T9v, T8v, T8w, T8x, T9w, T7y, T7u, T7x; + T95 = T7q + T7p; + T7r = T7p - T7q; + T9v = T8t - T8u; + T8v = T8t + T8u; + T8w = T7t + T7s; + T7u = T7s - T7t; + Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7m, T7j))); + Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7m, T7j)); + T7x = T7v + T7w; + T8x = T7v - T7w; + T9w = T7u - T7x; + T7y = T7u + T7x; + { + E T7J, T8A, T7G, T7M; + { + E T7C, T96, T8y, T7F; + T9c = T7A + T7B; + T7C = T7A - T7B; + T9x = FMA(KP707106781, T9w, T9v); + T9T = FNMS(KP707106781, T9w, T9v); + T8L = FNMS(KP707106781, T7y, T7r); + T7z = FMA(KP707106781, T7y, T7r); + T96 = T8x - T8w; + T8y = T8w + T8x; + T7F = T7D + T7E; + T9b = T7D - T7E; + T99 = T7H + T7I; + T7J = T7H - T7I; + T97 = FMA(KP707106781, T96, T95); + T9J = FNMS(KP707106781, T96, T95); + T8V = FNMS(KP707106781, T8y, T8v); + T8z = FMA(KP707106781, T8y, T8v); + T8A = FMA(KP414213562, T7C, T7F); + T7G = FNMS(KP414213562, T7F, T7C); + T7M = T7K + T7L; + T98 = T7K - T7L; + } + { + E T9n, T9o, T8B, T7N; + T7S = T7Q + T7R; + T9n = T7R - T7Q; + T9o = T85 - T84; + T86 = T84 + T85; + T83 = T81 + T82; + T9q = T81 - T82; + T8B = FNMS(KP414213562, T7J, T7M); + T7N = FMA(KP414213562, T7M, T7J); + T9M = FMA(KP707106781, T9o, T9n); + T9p = FNMS(KP707106781, T9o, T9n); + T8M = T8B - T8A; + T8C = T8A + T8B; + T8W = T7G - T7N; + T7O = T7G + T7N; + T9r = T7Y - T7V; + T7Z = T7V + T7Y; + } + } + } + { + E T8O, T80, T9N, T9s, T8P, T87; + T9N = FMA(KP707106781, T9r, T9q); + T9s = FNMS(KP707106781, T9r, T9q); + T8O = FNMS(KP707106781, T7Z, T7S); + T80 = FMA(KP707106781, T7Z, T7S); + T9O = FMA(KP198912367, T9N, T9M); + T9Y = FNMS(KP198912367, T9M, T9N); + T9E = FMA(KP668178637, T9p, T9s); + T9t = FNMS(KP668178637, T9s, T9p); + T8P = FNMS(KP707106781, T86, T83); + T87 = FMA(KP707106781, T86, T83); + T9z = FNMS(KP414213562, T98, T99); + T9a = FMA(KP414213562, T99, T98); + T8Q = FNMS(KP668178637, T8P, T8O); + T90 = FMA(KP668178637, T8O, T8P); + T8G = FNMS(KP198912367, T80, T87); + T88 = FMA(KP198912367, T87, T80); + } + { + E T8b, T9j, T9P, T9i, T9k, T8i, T9Q, T9l; + { + E T9g, T9h, T9y, T9d; + T8b = T89 - T8a; + T9g = T8a + T89; + T9h = T8n - T8o; + T8p = T8n + T8o; + T8m = T8k + T8l; + T9j = T8l - T8k; + T9y = FMA(KP414213562, T9b, T9c); + T9d = FNMS(KP414213562, T9c, T9b); + T9P = FMA(KP707106781, T9h, T9g); + T9i = FNMS(KP707106781, T9h, T9g); + T9K = T9y + T9z; + T9A = T9y - T9z; + T9U = T9d + T9a; + T9e = T9a - T9d; + T9k = T8h - T8e; + T8i = T8e + T8h; + } + T9Q = FMA(KP707106781, T9k, T9j); + T9l = FNMS(KP707106781, T9k, T9j); + T8R = FNMS(KP707106781, T8i, T8b); + T8j = FMA(KP707106781, T8i, T8b); + T9R = FMA(KP198912367, T9Q, T9P); + T9Z = FNMS(KP198912367, T9P, T9Q); + T9F = FMA(KP668178637, T9i, T9l); + T9m = FNMS(KP668178637, T9l, T9i); + } + } + { + E T8Z, T92, T9D, T9G; + { + E T8F, T7P, T8J, T8D, T8S, T8q; + T8F = FNMS(KP923879532, T7O, T7z); + T7P = FMA(KP923879532, T7O, T7z); + T8J = FMA(KP923879532, T8C, T8z); + T8D = FNMS(KP923879532, T8C, T8z); + T8S = FNMS(KP707106781, T8p, T8m); + T8q = FMA(KP707106781, T8p, T8m); + { + E T8Y, T8X, T93, T94; + { + E T8N, T91, T8H, T8r, T8U, T8T; + T8Z = FMA(KP923879532, T8M, T8L); + T8N = FNMS(KP923879532, T8M, T8L); + T8T = FMA(KP668178637, T8S, T8R); + T91 = FNMS(KP668178637, T8R, T8S); + T8H = FMA(KP198912367, T8j, T8q); + T8r = FNMS(KP198912367, T8q, T8j); + T8U = T8Q + T8T; + T8Y = T8T - T8Q; + T8X = FMA(KP923879532, T8W, T8V); + T93 = FNMS(KP923879532, T8W, T8V); + { + E T8I, T8K, T8E, T8s; + T8I = T8G - T8H; + T8K = T8G + T8H; + T8E = T8r - T88; + T8s = T88 + T8r; + Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T8U, T8N))); + Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T8U, T8N)); + Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T8I, T8F))); + Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8I, T8F)); + Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8K, T8J)); + Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T8K, T8J)); + Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T8E, T8D)); + Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T8E, T8D)); + Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T8s, T7P))); + Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T8s, T7P)); + T94 = T90 + T91; + T92 = T90 - T91; + } + } + Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T94, T93)); + Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T94, T93)); + Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T8Y, T8X)); + Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T8Y, T8X)); + } + } + { + E T9C, T9B, T9H, T9I, T9f, T9u; + T9D = FNMS(KP923879532, T9e, T97); + T9f = FMA(KP923879532, T9e, T97); + T9u = T9m - T9t; + T9C = T9t + T9m; + T9B = FNMS(KP923879532, T9A, T9x); + T9H = FMA(KP923879532, T9A, T9x); + Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T92, T8Z))); + Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T92, T8Z)); + Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, T9u, T9f))); + Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9u, T9f)); + T9I = T9E + T9F; + T9G = T9E - T9F; + Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, T9I, T9H)); + Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, T9I, T9H)); + Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9C, T9B)); + Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, T9C, T9B)); + } + { + E T9W, T9V, Ta1, Ta2, T9L, T9S; + T9X = FNMS(KP923879532, T9K, T9J); + T9L = FMA(KP923879532, T9K, T9J); + T9S = T9O - T9R; + T9W = T9O + T9R; + T9V = FNMS(KP923879532, T9U, T9T); + Ta1 = FMA(KP923879532, T9U, T9T); + Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, T9G, T9D))); + Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, T9G, T9D)); + Im[0] = -(KP500000000 * (FNMS(KP980785280, T9S, T9L))); + Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, T9S, T9L)); + Ta2 = T9Y + T9Z; + Ta0 = T9Y - T9Z; + Rm[0] = KP500000000 * (FMA(KP980785280, Ta2, Ta1)); + Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, Ta2, Ta1)); + Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, T9W, T9V)); + Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, T9W, T9V)); + } + } + } + } + } + Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, Ta0, T9X))); + Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Ta0, T9X)); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 32}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {300, 126, 198, 0} }; + +void X(codelet_hc2cfdft_32) (planner *p) { + X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hc2cfdft_32 -include hc2cf.h */ + +/* + * This function contains 498 FP additions, 228 FP multiplications, + * (or, 404 additions, 134 multiplications, 94 fused multiply/add), + * 106 stack variables, 9 constants, and 128 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP277785116, +0.277785116509801112371415406974266437187468595); + DK(KP415734806, +0.415734806151272618539394188808952878369280406); + DK(KP097545161, +0.097545161008064133924142434238511120463845809); + DK(KP490392640, +0.490392640201615224563091118067119518486966865); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP191341716, +0.191341716182544885864229992015199433380672281); + DK(KP461939766, +0.461939766255643378064091594698394143411208313); + DK(KP353553390, +0.353553390593273762200422181052424519642417969); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { + E T2S, T5K, T52, T5N, T7p, T8r, T7i, T8o, T2q, T7t, T45, T6L, T2d, T7u, T48; + E T6M, T1A, T4c, T4f, T1T, T3f, T5M, T7e, T7l, T6J, T7x, T4V, T5J, T7b, T7k; + E T6G, T7w, Tj, TC, T5r, T4k, T4n, T5s, T3D, T5C, T6V, T72, T4G, T5F, T6u; + E T86, T6S, T71, T6r, T85, TW, T1f, T5v, T4r, T4u, T5u, T40, T5G, T76, T8k; + E T4N, T5D, T6B, T89, T6Z, T8h, T6y, T88; + { + E T1Y, T22, T2L, T4W, T2p, T43, T2A, T50, T27, T2b, T2Q, T4X, T2h, T2l, T2F; + E T4Z; + { + E T1W, T1X, T2K, T20, T21, T2I, T2H, T2J; + T1W = Ip[WS(rs, 4)]; + T1X = Im[WS(rs, 4)]; + T2K = T1W + T1X; + T20 = Rp[WS(rs, 4)]; + T21 = Rm[WS(rs, 4)]; + T2I = T20 - T21; + T1Y = T1W - T1X; + T22 = T20 + T21; + T2H = W[16]; + T2J = W[17]; + T2L = FMA(T2H, T2I, T2J * T2K); + T4W = FNMS(T2J, T2I, T2H * T2K); + } + { + E T2n, T2o, T2z, T2v, T2w, T2x, T2u, T2y; + T2n = Ip[0]; + T2o = Im[0]; + T2z = T2n + T2o; + T2v = Rm[0]; + T2w = Rp[0]; + T2x = T2v - T2w; + T2p = T2n - T2o; + T43 = T2w + T2v; + T2u = W[0]; + T2y = W[1]; + T2A = FNMS(T2y, T2z, T2u * T2x); + T50 = FMA(T2y, T2x, T2u * T2z); + } + { + E T25, T26, T2P, T29, T2a, T2N, T2M, T2O; + T25 = Ip[WS(rs, 12)]; + T26 = Im[WS(rs, 12)]; + T2P = T25 + T26; + T29 = Rp[WS(rs, 12)]; + T2a = Rm[WS(rs, 12)]; + T2N = T29 - T2a; + T27 = T25 - T26; + T2b = T29 + T2a; + T2M = W[48]; + T2O = W[49]; + T2Q = FMA(T2M, T2N, T2O * T2P); + T4X = FNMS(T2O, T2N, T2M * T2P); + } + { + E T2f, T2g, T2E, T2j, T2k, T2C, T2B, T2D; + T2f = Ip[WS(rs, 8)]; + T2g = Im[WS(rs, 8)]; + T2E = T2f + T2g; + T2j = Rp[WS(rs, 8)]; + T2k = Rm[WS(rs, 8)]; + T2C = T2j - T2k; + T2h = T2f - T2g; + T2l = T2j + T2k; + T2B = W[32]; + T2D = W[33]; + T2F = FMA(T2B, T2C, T2D * T2E); + T4Z = FNMS(T2D, T2C, T2B * T2E); + } + { + E T2G, T2R, T7g, T7h; + T2G = T2A - T2F; + T2R = T2L + T2Q; + T2S = T2G - T2R; + T5K = T2R + T2G; + { + E T4Y, T51, T7n, T7o; + T4Y = T4W + T4X; + T51 = T4Z + T50; + T52 = T4Y + T51; + T5N = T51 - T4Y; + T7n = T2Q - T2L; + T7o = T50 - T4Z; + T7p = T7n + T7o; + T8r = T7o - T7n; + } + T7g = T2F + T2A; + T7h = T4W - T4X; + T7i = T7g - T7h; + T8o = T7h + T7g; + { + E T2m, T44, T2e, T2i; + T2e = W[30]; + T2i = W[31]; + T2m = FNMS(T2i, T2l, T2e * T2h); + T44 = FMA(T2e, T2l, T2i * T2h); + T2q = T2m + T2p; + T7t = T43 - T44; + T45 = T43 + T44; + T6L = T2p - T2m; + } + { + E T23, T46, T2c, T47; + { + E T1V, T1Z, T24, T28; + T1V = W[14]; + T1Z = W[15]; + T23 = FNMS(T1Z, T22, T1V * T1Y); + T46 = FMA(T1V, T22, T1Z * T1Y); + T24 = W[46]; + T28 = W[47]; + T2c = FNMS(T28, T2b, T24 * T27); + T47 = FMA(T24, T2b, T28 * T27); + } + T2d = T23 + T2c; + T7u = T23 - T2c; + T48 = T46 + T47; + T6M = T46 - T47; + } + } + } + { + E T1q, T4a, T2X, T4P, T1S, T4e, T3d, T4T, T1z, T4b, T32, T4Q, T1J, T4d, T38; + E T4S; + { + E T1l, T2W, T1p, T2U; + { + E T1j, T1k, T1n, T1o; + T1j = Ip[WS(rs, 2)]; + T1k = Im[WS(rs, 2)]; + T1l = T1j - T1k; + T2W = T1j + T1k; + T1n = Rp[WS(rs, 2)]; + T1o = Rm[WS(rs, 2)]; + T1p = T1n + T1o; + T2U = T1n - T1o; + } + { + E T1i, T1m, T2T, T2V; + T1i = W[6]; + T1m = W[7]; + T1q = FNMS(T1m, T1p, T1i * T1l); + T4a = FMA(T1i, T1p, T1m * T1l); + T2T = W[8]; + T2V = W[9]; + T2X = FMA(T2T, T2U, T2V * T2W); + T4P = FNMS(T2V, T2U, T2T * T2W); + } + } + { + E T1N, T3c, T1R, T3a; + { + E T1L, T1M, T1P, T1Q; + T1L = Ip[WS(rs, 6)]; + T1M = Im[WS(rs, 6)]; + T1N = T1L - T1M; + T3c = T1L + T1M; + T1P = Rp[WS(rs, 6)]; + T1Q = Rm[WS(rs, 6)]; + T1R = T1P + T1Q; + T3a = T1P - T1Q; + } + { + E T1K, T1O, T39, T3b; + T1K = W[22]; + T1O = W[23]; + T1S = FNMS(T1O, T1R, T1K * T1N); + T4e = FMA(T1K, T1R, T1O * T1N); + T39 = W[24]; + T3b = W[25]; + T3d = FMA(T39, T3a, T3b * T3c); + T4T = FNMS(T3b, T3a, T39 * T3c); + } + } + { + E T1u, T31, T1y, T2Z; + { + E T1s, T1t, T1w, T1x; + T1s = Ip[WS(rs, 10)]; + T1t = Im[WS(rs, 10)]; + T1u = T1s - T1t; + T31 = T1s + T1t; + T1w = Rp[WS(rs, 10)]; + T1x = Rm[WS(rs, 10)]; + T1y = T1w + T1x; + T2Z = T1w - T1x; + } + { + E T1r, T1v, T2Y, T30; + T1r = W[38]; + T1v = W[39]; + T1z = FNMS(T1v, T1y, T1r * T1u); + T4b = FMA(T1r, T1y, T1v * T1u); + T2Y = W[40]; + T30 = W[41]; + T32 = FMA(T2Y, T2Z, T30 * T31); + T4Q = FNMS(T30, T2Z, T2Y * T31); + } + } + { + E T1E, T37, T1I, T35; + { + E T1C, T1D, T1G, T1H; + T1C = Ip[WS(rs, 14)]; + T1D = Im[WS(rs, 14)]; + T1E = T1C - T1D; + T37 = T1C + T1D; + T1G = Rp[WS(rs, 14)]; + T1H = Rm[WS(rs, 14)]; + T1I = T1G + T1H; + T35 = T1G - T1H; + } + { + E T1B, T1F, T34, T36; + T1B = W[54]; + T1F = W[55]; + T1J = FNMS(T1F, T1I, T1B * T1E); + T4d = FMA(T1B, T1I, T1F * T1E); + T34 = W[56]; + T36 = W[57]; + T38 = FMA(T34, T35, T36 * T37); + T4S = FNMS(T36, T35, T34 * T37); + } + } + { + E T33, T3e, T4R, T4U; + T1A = T1q + T1z; + T4c = T4a + T4b; + T4f = T4d + T4e; + T1T = T1J + T1S; + T33 = T2X + T32; + T3e = T38 + T3d; + T3f = T33 + T3e; + T5M = T3e - T33; + { + E T7c, T7d, T6H, T6I; + T7c = T4S - T4T; + T7d = T3d - T38; + T7e = T7c + T7d; + T7l = T7c - T7d; + T6H = T4d - T4e; + T6I = T1J - T1S; + T6J = T6H + T6I; + T7x = T6H - T6I; + } + T4R = T4P + T4Q; + T4U = T4S + T4T; + T4V = T4R + T4U; + T5J = T4U - T4R; + { + E T79, T7a, T6E, T6F; + T79 = T32 - T2X; + T7a = T4P - T4Q; + T7b = T79 - T7a; + T7k = T7a + T79; + T6E = T1q - T1z; + T6F = T4a - T4b; + T6G = T6E - T6F; + T7w = T6F + T6E; + } + } + } + { + E T9, T4i, T3l, T4A, TB, T4m, T3B, T4E, Ti, T4j, T3q, T4B, Ts, T4l, T3w; + E T4D; + { + E T4, T3k, T8, T3i; + { + E T2, T3, T6, T7; + T2 = Ip[WS(rs, 1)]; + T3 = Im[WS(rs, 1)]; + T4 = T2 - T3; + T3k = T2 + T3; + T6 = Rp[WS(rs, 1)]; + T7 = Rm[WS(rs, 1)]; + T8 = T6 + T7; + T3i = T6 - T7; + } + { + E T1, T5, T3h, T3j; + T1 = W[2]; + T5 = W[3]; + T9 = FNMS(T5, T8, T1 * T4); + T4i = FMA(T1, T8, T5 * T4); + T3h = W[4]; + T3j = W[5]; + T3l = FMA(T3h, T3i, T3j * T3k); + T4A = FNMS(T3j, T3i, T3h * T3k); + } + } + { + E Tw, T3A, TA, T3y; + { + E Tu, Tv, Ty, Tz; + Tu = Ip[WS(rs, 13)]; + Tv = Im[WS(rs, 13)]; + Tw = Tu - Tv; + T3A = Tu + Tv; + Ty = Rp[WS(rs, 13)]; + Tz = Rm[WS(rs, 13)]; + TA = Ty + Tz; + T3y = Ty - Tz; + } + { + E Tt, Tx, T3x, T3z; + Tt = W[50]; + Tx = W[51]; + TB = FNMS(Tx, TA, Tt * Tw); + T4m = FMA(Tt, TA, Tx * Tw); + T3x = W[52]; + T3z = W[53]; + T3B = FMA(T3x, T3y, T3z * T3A); + T4E = FNMS(T3z, T3y, T3x * T3A); + } + } + { + E Td, T3p, Th, T3n; + { + E Tb, Tc, Tf, Tg; + Tb = Ip[WS(rs, 9)]; + Tc = Im[WS(rs, 9)]; + Td = Tb - Tc; + T3p = Tb + Tc; + Tf = Rp[WS(rs, 9)]; + Tg = Rm[WS(rs, 9)]; + Th = Tf + Tg; + T3n = Tf - Tg; + } + { + E Ta, Te, T3m, T3o; + Ta = W[34]; + Te = W[35]; + Ti = FNMS(Te, Th, Ta * Td); + T4j = FMA(Ta, Th, Te * Td); + T3m = W[36]; + T3o = W[37]; + T3q = FMA(T3m, T3n, T3o * T3p); + T4B = FNMS(T3o, T3n, T3m * T3p); + } + } + { + E Tn, T3v, Tr, T3t; + { + E Tl, Tm, Tp, Tq; + Tl = Ip[WS(rs, 5)]; + Tm = Im[WS(rs, 5)]; + Tn = Tl - Tm; + T3v = Tl + Tm; + Tp = Rp[WS(rs, 5)]; + Tq = Rm[WS(rs, 5)]; + Tr = Tp + Tq; + T3t = Tp - Tq; + } + { + E Tk, To, T3s, T3u; + Tk = W[18]; + To = W[19]; + Ts = FNMS(To, Tr, Tk * Tn); + T4l = FMA(Tk, Tr, To * Tn); + T3s = W[20]; + T3u = W[21]; + T3w = FMA(T3s, T3t, T3u * T3v); + T4D = FNMS(T3u, T3t, T3s * T3v); + } + } + Tj = T9 + Ti; + TC = Ts + TB; + T5r = Tj - TC; + T4k = T4i + T4j; + T4n = T4l + T4m; + T5s = T4k - T4n; + { + E T3r, T3C, T6T, T6U; + T3r = T3l + T3q; + T3C = T3w + T3B; + T3D = T3r + T3C; + T5C = T3C - T3r; + T6T = T4E - T4D; + T6U = T3w - T3B; + T6V = T6T + T6U; + T72 = T6T - T6U; + } + { + E T4C, T4F, T6s, T6t; + T4C = T4A + T4B; + T4F = T4D + T4E; + T4G = T4C + T4F; + T5F = T4F - T4C; + T6s = T4i - T4j; + T6t = Ts - TB; + T6u = T6s + T6t; + T86 = T6s - T6t; + } + { + E T6Q, T6R, T6p, T6q; + T6Q = T3q - T3l; + T6R = T4A - T4B; + T6S = T6Q - T6R; + T71 = T6R + T6Q; + T6p = T9 - Ti; + T6q = T4l - T4m; + T6r = T6p - T6q; + T85 = T6p + T6q; + } + } + { + E TM, T4p, T3I, T4H, T1e, T4t, T3Y, T4L, TV, T4q, T3N, T4I, T15, T4s, T3T; + E T4K; + { + E TH, T3H, TL, T3F; + { + E TF, TG, TJ, TK; + TF = Ip[WS(rs, 15)]; + TG = Im[WS(rs, 15)]; + TH = TF - TG; + T3H = TF + TG; + TJ = Rp[WS(rs, 15)]; + TK = Rm[WS(rs, 15)]; + TL = TJ + TK; + T3F = TJ - TK; + } + { + E TE, TI, T3E, T3G; + TE = W[58]; + TI = W[59]; + TM = FNMS(TI, TL, TE * TH); + T4p = FMA(TE, TL, TI * TH); + T3E = W[60]; + T3G = W[61]; + T3I = FMA(T3E, T3F, T3G * T3H); + T4H = FNMS(T3G, T3F, T3E * T3H); + } + } + { + E T19, T3X, T1d, T3V; + { + E T17, T18, T1b, T1c; + T17 = Ip[WS(rs, 11)]; + T18 = Im[WS(rs, 11)]; + T19 = T17 - T18; + T3X = T17 + T18; + T1b = Rp[WS(rs, 11)]; + T1c = Rm[WS(rs, 11)]; + T1d = T1b + T1c; + T3V = T1b - T1c; + } + { + E T16, T1a, T3U, T3W; + T16 = W[42]; + T1a = W[43]; + T1e = FNMS(T1a, T1d, T16 * T19); + T4t = FMA(T16, T1d, T1a * T19); + T3U = W[44]; + T3W = W[45]; + T3Y = FMA(T3U, T3V, T3W * T3X); + T4L = FNMS(T3W, T3V, T3U * T3X); + } + } + { + E TQ, T3M, TU, T3K; + { + E TO, TP, TS, TT; + TO = Ip[WS(rs, 7)]; + TP = Im[WS(rs, 7)]; + TQ = TO - TP; + T3M = TO + TP; + TS = Rp[WS(rs, 7)]; + TT = Rm[WS(rs, 7)]; + TU = TS + TT; + T3K = TS - TT; + } + { + E TN, TR, T3J, T3L; + TN = W[26]; + TR = W[27]; + TV = FNMS(TR, TU, TN * TQ); + T4q = FMA(TN, TU, TR * TQ); + T3J = W[28]; + T3L = W[29]; + T3N = FMA(T3J, T3K, T3L * T3M); + T4I = FNMS(T3L, T3K, T3J * T3M); + } + } + { + E T10, T3S, T14, T3Q; + { + E TY, TZ, T12, T13; + TY = Ip[WS(rs, 3)]; + TZ = Im[WS(rs, 3)]; + T10 = TY - TZ; + T3S = TY + TZ; + T12 = Rp[WS(rs, 3)]; + T13 = Rm[WS(rs, 3)]; + T14 = T12 + T13; + T3Q = T12 - T13; + } + { + E TX, T11, T3P, T3R; + TX = W[10]; + T11 = W[11]; + T15 = FNMS(T11, T14, TX * T10); + T4s = FMA(TX, T14, T11 * T10); + T3P = W[12]; + T3R = W[13]; + T3T = FMA(T3P, T3Q, T3R * T3S); + T4K = FNMS(T3R, T3Q, T3P * T3S); + } + } + TW = TM + TV; + T1f = T15 + T1e; + T5v = TW - T1f; + T4r = T4p + T4q; + T4u = T4s + T4t; + T5u = T4r - T4u; + { + E T3O, T3Z, T74, T75; + T3O = T3I + T3N; + T3Z = T3T + T3Y; + T40 = T3O + T3Z; + T5G = T3Z - T3O; + T74 = T4H - T4I; + T75 = T3Y - T3T; + T76 = T74 + T75; + T8k = T74 - T75; + } + { + E T4J, T4M, T6z, T6A; + T4J = T4H + T4I; + T4M = T4K + T4L; + T4N = T4J + T4M; + T5D = T4J - T4M; + T6z = T4p - T4q; + T6A = T15 - T1e; + T6B = T6z + T6A; + T89 = T6z - T6A; + } + { + E T6X, T6Y, T6w, T6x; + T6X = T3N - T3I; + T6Y = T4K - T4L; + T6Z = T6X - T6Y; + T8h = T6X + T6Y; + T6w = TM - TV; + T6x = T4s - T4t; + T6y = T6w - T6x; + T88 = T6w + T6x; + } + } + { + E T1h, T5i, T5c, T5m, T5f, T5n, T2s, T58, T42, T4y, T4w, T57, T54, T56, T4h; + E T5h; + { + E TD, T1g, T5a, T5b; + TD = Tj + TC; + T1g = TW + T1f; + T1h = TD + T1g; + T5i = TD - T1g; + T5a = T4N - T4G; + T5b = T3D - T40; + T5c = T5a + T5b; + T5m = T5a - T5b; + } + { + E T5d, T5e, T1U, T2r; + T5d = T3f + T2S; + T5e = T52 - T4V; + T5f = T5d - T5e; + T5n = T5d + T5e; + T1U = T1A + T1T; + T2r = T2d + T2q; + T2s = T1U + T2r; + T58 = T2r - T1U; + } + { + E T3g, T41, T4o, T4v; + T3g = T2S - T3f; + T41 = T3D + T40; + T42 = T3g - T41; + T4y = T41 + T3g; + T4o = T4k + T4n; + T4v = T4r + T4u; + T4w = T4o + T4v; + T57 = T4v - T4o; + } + { + E T4O, T53, T49, T4g; + T4O = T4G + T4N; + T53 = T4V + T52; + T54 = T4O - T53; + T56 = T4O + T53; + T49 = T45 + T48; + T4g = T4c + T4f; + T4h = T49 + T4g; + T5h = T49 - T4g; + } + { + E T2t, T55, T4x, T4z; + T2t = T1h + T2s; + Ip[0] = KP500000000 * (T2t + T42); + Im[WS(rs, 15)] = KP500000000 * (T42 - T2t); + T55 = T4h + T4w; + Rm[WS(rs, 15)] = KP500000000 * (T55 - T56); + Rp[0] = KP500000000 * (T55 + T56); + T4x = T4h - T4w; + Rm[WS(rs, 7)] = KP500000000 * (T4x - T4y); + Rp[WS(rs, 8)] = KP500000000 * (T4x + T4y); + T4z = T2s - T1h; + Ip[WS(rs, 8)] = KP500000000 * (T4z + T54); + Im[WS(rs, 7)] = KP500000000 * (T54 - T4z); + } + { + E T59, T5g, T5p, T5q; + T59 = KP500000000 * (T57 + T58); + T5g = KP353553390 * (T5c + T5f); + Ip[WS(rs, 4)] = T59 + T5g; + Im[WS(rs, 11)] = T5g - T59; + T5p = KP500000000 * (T5h + T5i); + T5q = KP353553390 * (T5m + T5n); + Rm[WS(rs, 11)] = T5p - T5q; + Rp[WS(rs, 4)] = T5p + T5q; + } + { + E T5j, T5k, T5l, T5o; + T5j = KP500000000 * (T5h - T5i); + T5k = KP353553390 * (T5f - T5c); + Rm[WS(rs, 3)] = T5j - T5k; + Rp[WS(rs, 12)] = T5j + T5k; + T5l = KP500000000 * (T58 - T57); + T5o = KP353553390 * (T5m - T5n); + Ip[WS(rs, 12)] = T5l + T5o; + Im[WS(rs, 3)] = T5o - T5l; + } + } + { + E T5x, T6g, T6a, T6k, T6d, T6l, T5A, T66, T5I, T60, T5T, T6f, T5W, T65, T5P; + E T61; + { + E T5t, T5w, T68, T69; + T5t = T5r - T5s; + T5w = T5u + T5v; + T5x = KP353553390 * (T5t + T5w); + T6g = KP353553390 * (T5t - T5w); + T68 = T5D - T5C; + T69 = T5G - T5F; + T6a = FMA(KP461939766, T68, KP191341716 * T69); + T6k = FNMS(KP461939766, T69, KP191341716 * T68); + } + { + E T6b, T6c, T5y, T5z; + T6b = T5K - T5J; + T6c = T5N - T5M; + T6d = FNMS(KP461939766, T6c, KP191341716 * T6b); + T6l = FMA(KP461939766, T6b, KP191341716 * T6c); + T5y = T4f - T4c; + T5z = T2q - T2d; + T5A = KP500000000 * (T5y + T5z); + T66 = KP500000000 * (T5z - T5y); + } + { + E T5E, T5H, T5R, T5S; + T5E = T5C + T5D; + T5H = T5F + T5G; + T5I = FMA(KP191341716, T5E, KP461939766 * T5H); + T60 = FNMS(KP191341716, T5H, KP461939766 * T5E); + T5R = T45 - T48; + T5S = T1A - T1T; + T5T = KP500000000 * (T5R + T5S); + T6f = KP500000000 * (T5R - T5S); + } + { + E T5U, T5V, T5L, T5O; + T5U = T5s + T5r; + T5V = T5u - T5v; + T5W = KP353553390 * (T5U + T5V); + T65 = KP353553390 * (T5V - T5U); + T5L = T5J + T5K; + T5O = T5M + T5N; + T5P = FNMS(KP191341716, T5O, KP461939766 * T5L); + T61 = FMA(KP191341716, T5L, KP461939766 * T5O); + } + { + E T5B, T5Q, T63, T64; + T5B = T5x + T5A; + T5Q = T5I + T5P; + Ip[WS(rs, 2)] = T5B + T5Q; + Im[WS(rs, 13)] = T5Q - T5B; + T63 = T5T + T5W; + T64 = T60 + T61; + Rm[WS(rs, 13)] = T63 - T64; + Rp[WS(rs, 2)] = T63 + T64; + } + { + E T5X, T5Y, T5Z, T62; + T5X = T5T - T5W; + T5Y = T5P - T5I; + Rm[WS(rs, 5)] = T5X - T5Y; + Rp[WS(rs, 10)] = T5X + T5Y; + T5Z = T5A - T5x; + T62 = T60 - T61; + Ip[WS(rs, 10)] = T5Z + T62; + Im[WS(rs, 5)] = T62 - T5Z; + } + { + E T67, T6e, T6n, T6o; + T67 = T65 + T66; + T6e = T6a + T6d; + Ip[WS(rs, 6)] = T67 + T6e; + Im[WS(rs, 9)] = T6e - T67; + T6n = T6f + T6g; + T6o = T6k + T6l; + Rm[WS(rs, 9)] = T6n - T6o; + Rp[WS(rs, 6)] = T6n + T6o; + } + { + E T6h, T6i, T6j, T6m; + T6h = T6f - T6g; + T6i = T6d - T6a; + Rm[WS(rs, 1)] = T6h - T6i; + Rp[WS(rs, 14)] = T6h + T6i; + T6j = T66 - T65; + T6m = T6k - T6l; + Ip[WS(rs, 14)] = T6j + T6m; + Im[WS(rs, 1)] = T6m - T6j; + } + } + { + E T6D, T7W, T6O, T7M, T7C, T7L, T7z, T7V, T7r, T81, T7H, T7T, T78, T80, T7G; + E T7Q; + { + E T6v, T6C, T7v, T7y; + T6v = FNMS(KP191341716, T6u, KP461939766 * T6r); + T6C = FMA(KP461939766, T6y, KP191341716 * T6B); + T6D = T6v + T6C; + T7W = T6v - T6C; + { + E T6K, T6N, T7A, T7B; + T6K = KP353553390 * (T6G + T6J); + T6N = KP500000000 * (T6L - T6M); + T6O = T6K + T6N; + T7M = T6N - T6K; + T7A = FMA(KP191341716, T6r, KP461939766 * T6u); + T7B = FNMS(KP191341716, T6y, KP461939766 * T6B); + T7C = T7A + T7B; + T7L = T7B - T7A; + } + T7v = KP500000000 * (T7t + T7u); + T7y = KP353553390 * (T7w + T7x); + T7z = T7v + T7y; + T7V = T7v - T7y; + { + E T7j, T7R, T7q, T7S, T7f, T7m; + T7f = KP707106781 * (T7b + T7e); + T7j = T7f + T7i; + T7R = T7i - T7f; + T7m = KP707106781 * (T7k + T7l); + T7q = T7m + T7p; + T7S = T7p - T7m; + T7r = FNMS(KP097545161, T7q, KP490392640 * T7j); + T81 = FMA(KP415734806, T7R, KP277785116 * T7S); + T7H = FMA(KP097545161, T7j, KP490392640 * T7q); + T7T = FNMS(KP415734806, T7S, KP277785116 * T7R); + } + { + E T70, T7O, T77, T7P, T6W, T73; + T6W = KP707106781 * (T6S + T6V); + T70 = T6W + T6Z; + T7O = T6Z - T6W; + T73 = KP707106781 * (T71 + T72); + T77 = T73 + T76; + T7P = T76 - T73; + T78 = FMA(KP490392640, T70, KP097545161 * T77); + T80 = FNMS(KP415734806, T7O, KP277785116 * T7P); + T7G = FNMS(KP097545161, T70, KP490392640 * T77); + T7Q = FMA(KP277785116, T7O, KP415734806 * T7P); + } + } + { + E T6P, T7s, T7J, T7K; + T6P = T6D + T6O; + T7s = T78 + T7r; + Ip[WS(rs, 1)] = T6P + T7s; + Im[WS(rs, 14)] = T7s - T6P; + T7J = T7z + T7C; + T7K = T7G + T7H; + Rm[WS(rs, 14)] = T7J - T7K; + Rp[WS(rs, 1)] = T7J + T7K; + } + { + E T7D, T7E, T7F, T7I; + T7D = T7z - T7C; + T7E = T7r - T78; + Rm[WS(rs, 6)] = T7D - T7E; + Rp[WS(rs, 9)] = T7D + T7E; + T7F = T6O - T6D; + T7I = T7G - T7H; + Ip[WS(rs, 9)] = T7F + T7I; + Im[WS(rs, 6)] = T7I - T7F; + } + { + E T7N, T7U, T83, T84; + T7N = T7L + T7M; + T7U = T7Q + T7T; + Ip[WS(rs, 5)] = T7N + T7U; + Im[WS(rs, 10)] = T7U - T7N; + T83 = T7V + T7W; + T84 = T80 + T81; + Rm[WS(rs, 10)] = T83 - T84; + Rp[WS(rs, 5)] = T83 + T84; + } + { + E T7X, T7Y, T7Z, T82; + T7X = T7V - T7W; + T7Y = T7T - T7Q; + Rm[WS(rs, 2)] = T7X - T7Y; + Rp[WS(rs, 13)] = T7X + T7Y; + T7Z = T7M - T7L; + T82 = T80 - T81; + Ip[WS(rs, 13)] = T7Z + T82; + Im[WS(rs, 2)] = T82 - T7Z; + } + } + { + E T8b, T8U, T8e, T8K, T8A, T8J, T8x, T8T, T8t, T8Z, T8F, T8R, T8m, T8Y, T8E; + E T8O; + { + E T87, T8a, T8v, T8w; + T87 = FNMS(KP461939766, T86, KP191341716 * T85); + T8a = FMA(KP191341716, T88, KP461939766 * T89); + T8b = T87 + T8a; + T8U = T87 - T8a; + { + E T8c, T8d, T8y, T8z; + T8c = KP353553390 * (T7x - T7w); + T8d = KP500000000 * (T6M + T6L); + T8e = T8c + T8d; + T8K = T8d - T8c; + T8y = FMA(KP461939766, T85, KP191341716 * T86); + T8z = FNMS(KP461939766, T88, KP191341716 * T89); + T8A = T8y + T8z; + T8J = T8z - T8y; + } + T8v = KP500000000 * (T7t - T7u); + T8w = KP353553390 * (T6G - T6J); + T8x = T8v + T8w; + T8T = T8v - T8w; + { + E T8p, T8P, T8s, T8Q, T8n, T8q; + T8n = KP707106781 * (T7l - T7k); + T8p = T8n + T8o; + T8P = T8o - T8n; + T8q = KP707106781 * (T7b - T7e); + T8s = T8q + T8r; + T8Q = T8r - T8q; + T8t = FNMS(KP277785116, T8s, KP415734806 * T8p); + T8Z = FMA(KP490392640, T8P, KP097545161 * T8Q); + T8F = FMA(KP277785116, T8p, KP415734806 * T8s); + T8R = FNMS(KP490392640, T8Q, KP097545161 * T8P); + } + { + E T8i, T8M, T8l, T8N, T8g, T8j; + T8g = KP707106781 * (T72 - T71); + T8i = T8g + T8h; + T8M = T8h - T8g; + T8j = KP707106781 * (T6S - T6V); + T8l = T8j + T8k; + T8N = T8k - T8j; + T8m = FMA(KP415734806, T8i, KP277785116 * T8l); + T8Y = FNMS(KP490392640, T8M, KP097545161 * T8N); + T8E = FNMS(KP277785116, T8i, KP415734806 * T8l); + T8O = FMA(KP097545161, T8M, KP490392640 * T8N); + } + } + { + E T8f, T8u, T8H, T8I; + T8f = T8b + T8e; + T8u = T8m + T8t; + Ip[WS(rs, 3)] = T8f + T8u; + Im[WS(rs, 12)] = T8u - T8f; + T8H = T8x + T8A; + T8I = T8E + T8F; + Rm[WS(rs, 12)] = T8H - T8I; + Rp[WS(rs, 3)] = T8H + T8I; + } + { + E T8B, T8C, T8D, T8G; + T8B = T8x - T8A; + T8C = T8t - T8m; + Rm[WS(rs, 4)] = T8B - T8C; + Rp[WS(rs, 11)] = T8B + T8C; + T8D = T8e - T8b; + T8G = T8E - T8F; + Ip[WS(rs, 11)] = T8D + T8G; + Im[WS(rs, 4)] = T8G - T8D; + } + { + E T8L, T8S, T91, T92; + T8L = T8J + T8K; + T8S = T8O + T8R; + Ip[WS(rs, 7)] = T8L + T8S; + Im[WS(rs, 8)] = T8S - T8L; + T91 = T8T + T8U; + T92 = T8Y + T8Z; + Rm[WS(rs, 8)] = T91 - T92; + Rp[WS(rs, 7)] = T91 + T92; + } + { + E T8V, T8W, T8X, T90; + T8V = T8T - T8U; + T8W = T8R - T8O; + Rm[0] = T8V - T8W; + Rp[WS(rs, 15)] = T8V + T8W; + T8X = T8K - T8J; + T90 = T8Y - T8Z; + Ip[WS(rs, 15)] = T8X + T90; + Im[0] = T90 - T8X; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 32}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 32, "hc2cfdft_32", twinstr, &GENUS, {404, 134, 94, 0} }; + +void X(codelet_hc2cfdft_32) (planner *p) { + X(khc2c_register) (p, hc2cfdft_32, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */