Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_16.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hc2cfdft2_16.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,916 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:40:50 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */ + +/* + * This function contains 228 FP additions, 166 FP multiplications, + * (or, 136 additions, 74 multiplications, 92 fused multiply/add), + * 103 stack variables, 4 constants, and 64 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { + E T4p, T4o, T4n, T4s; + { + E T1, T2, Tw, Ty, Th, T3, Tx, TE, Ti, TK, Tj, T4, T5; + T1 = W[0]; + T2 = W[2]; + Tw = W[6]; + Ty = W[7]; + Th = W[4]; + T3 = T1 * T2; + Tx = T1 * Tw; + TE = T1 * Ty; + Ti = T1 * Th; + TK = T2 * Th; + Tj = W[5]; + T4 = W[1]; + T5 = W[3]; + { + E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T3S; + E T1N, Tv, T3A, T2E, T3B, T3L, T2c, T3I, T2S, TW, T3E, T3J, T2n, T3D, T2J; + E T3M, T2X; + { + E TF, Tk, Tz, TL, T6, TR, Tq, Tc, T2h, T25, T2k, T29, T1G, T1M, T2P; + E T2R; + { + E T18, TY, T1d, T13, T1H, T1A, T1K, T1E, T37, T1R, T35, T1X; + { + E T1j, T1o, T1W, T1p, T1m, T1Q, T1U, T1q; + { + E T1k, T1l, T1S, T1T; + { + E T1t, T28, T24, T1D, T1z, T1u, TQ, Tp, Tb; + T1t = Ip[0]; + TQ = T2 * Tj; + Tp = T1 * Tj; + TF = FNMS(T4, Tw, TE); + T1j = FMA(T4, Tj, Ti); + Tk = FNMS(T4, Tj, Ti); + Tz = FMA(T4, Ty, Tx); + T18 = FNMS(T5, Tj, TK); + TL = FMA(T5, Tj, TK); + TY = FNMS(T4, T5, T3); + T6 = FMA(T4, T5, T3); + Tb = T1 * T5; + TR = FNMS(T5, Th, TQ); + T1d = FMA(T5, Th, TQ); + Tq = FMA(T4, Th, Tp); + T1o = FNMS(T4, Th, Tp); + T28 = T6 * Tj; + T24 = T6 * Th; + T1D = TY * Tj; + T1z = TY * Th; + Tc = FNMS(T4, T2, Tb); + T13 = FMA(T4, T2, Tb); + T1u = Im[0]; + T1k = Ip[WS(rs, 4)]; + T2h = FMA(Tc, Tj, T24); + T25 = FNMS(Tc, Tj, T24); + T2k = FNMS(Tc, Th, T28); + T29 = FMA(Tc, Th, T28); + T1H = FNMS(T13, Tj, T1z); + T1A = FMA(T13, Tj, T1z); + T1K = FMA(T13, Th, T1D); + T1E = FNMS(T13, Th, T1D); + T1W = T1t + T1u; + T1v = T1t - T1u; + T1l = Im[WS(rs, 4)]; + } + T1S = Rm[0]; + T1T = Rp[0]; + T1p = Rp[WS(rs, 4)]; + T1m = T1k - T1l; + T1Q = T1k + T1l; + T2q = T1T + T1S; + T1U = T1S - T1T; + T1q = Rm[WS(rs, 4)]; + } + { + E T36, T1V, T1O, T1r, T1n, T1P, T34, T2r; + T36 = T4 * T1U; + T1V = T1 * T1U; + T1O = T1q - T1p; + T1r = T1p + T1q; + T1n = T1j * T1m; + T37 = FMA(T1, T1W, T36); + T2r = T1j * T1r; + T1P = Th * T1O; + T34 = Tj * T1O; + T1s = FNMS(T1o, T1r, T1n); + T2s = FMA(T1o, T1m, T2r); + T1R = FNMS(Tj, T1Q, T1P); + T35 = FMA(Th, T1Q, T34); + T1X = FNMS(T4, T1W, T1V); + } + } + { + E T1F, T11, T1e, T16, T1L, T1b, T1f, T1C, T2Z; + { + E T14, T15, TZ, T10, T19, T1a, T1B; + TZ = Ip[WS(rs, 2)]; + T10 = Im[WS(rs, 2)]; + T38 = T35 + T37; + T3T = T37 - T35; + T1Y = T1R + T1X; + T3P = T1X - T1R; + T1F = TZ + T10; + T11 = TZ - T10; + T14 = Rp[WS(rs, 2)]; + T15 = Rm[WS(rs, 2)]; + T19 = Ip[WS(rs, 6)]; + T1a = Im[WS(rs, 6)]; + T1e = Rp[WS(rs, 6)]; + T16 = T14 + T15; + T1B = T15 - T14; + T1L = T19 + T1a; + T1b = T19 - T1a; + T1f = Rm[WS(rs, 6)]; + T1C = T1A * T1B; + T2Z = T1E * T1B; + } + { + E T1J, T31, T2u, T30, T32; + { + E T12, T1g, T1I, T1c, T2w; + T12 = TY * T11; + T1g = T1e + T1f; + T1I = T1f - T1e; + T1c = T18 * T1b; + T17 = FNMS(T13, T16, T12); + T2w = T18 * T1g; + T1J = T1H * T1I; + T31 = T1K * T1I; + T1h = FNMS(T1d, T1g, T1c); + T2x = FMA(T1d, T1b, T2w); + } + T2u = TY * T16; + T30 = FMA(T1A, T1F, T2Z); + T32 = FMA(T1H, T1L, T31); + T1G = FNMS(T1E, T1F, T1C); + T2v = FMA(T13, T11, T2u); + T1M = FNMS(T1K, T1L, T1J); + T33 = T30 + T32; + T3Q = T30 - T32; + } + } + } + { + E Tl, T22, T9, T20, Tf, T2O, Ta, T21, T2A, Tm, Tr, Ts; + { + E T7, T8, Td, Te; + T7 = Ip[WS(rs, 1)]; + T3S = T1G - T1M; + T1N = T1G + T1M; + T8 = Im[WS(rs, 1)]; + Td = Rp[WS(rs, 1)]; + Te = Rm[WS(rs, 1)]; + Tl = Ip[WS(rs, 5)]; + T22 = T7 + T8; + T9 = T7 - T8; + T20 = Td - Te; + Tf = Td + Te; + T2O = T2 * T22; + Ta = T6 * T9; + T21 = T2 * T20; + T2A = T6 * Tf; + Tm = Im[WS(rs, 5)]; + Tr = Rp[WS(rs, 5)]; + Ts = Rm[WS(rs, 5)]; + } + { + E Tg, T2a, Tn, T26, T2Q, T27, T2C, T2B, Tu, Tt, To, T23, T2D, T2b; + Tg = FNMS(Tc, Tf, Ta); + T2a = Tl + Tm; + Tn = Tl - Tm; + T26 = Tr - Ts; + Tt = Tr + Ts; + T2Q = T25 * T2a; + To = Tk * Tn; + T27 = T25 * T26; + T2C = Tk * Tt; + T2B = FMA(Tc, T9, T2A); + Tu = FNMS(Tq, Tt, To); + T23 = FMA(T5, T22, T21); + T2D = FMA(Tq, Tn, T2C); + T2b = FMA(T29, T2a, T27); + Tv = Tg + Tu; + T3A = Tg - Tu; + T2P = FNMS(T5, T20, T2O); + T2E = T2B + T2D; + T3B = T2B - T2D; + T3L = T2b - T23; + T2c = T23 + T2b; + T2R = FNMS(T29, T26, T2Q); + } + } + { + E T2f, TC, T2T, TD, T2d, TI, TS, T2e, T2F, T2l, TO, TT; + { + E TG, TH, TA, TB, TM, TN; + TA = Ip[WS(rs, 7)]; + TB = Im[WS(rs, 7)]; + TG = Rp[WS(rs, 7)]; + T3I = T2R - T2P; + T2S = T2P + T2R; + T2f = TA + TB; + TC = TA - TB; + TH = Rm[WS(rs, 7)]; + TM = Ip[WS(rs, 3)]; + T2T = Tw * T2f; + TD = Tz * TC; + T2d = TG - TH; + TI = TG + TH; + TN = Im[WS(rs, 3)]; + TS = Rp[WS(rs, 3)]; + T2e = Tw * T2d; + T2F = Tz * TI; + T2l = TM + TN; + TO = TM - TN; + TT = Rm[WS(rs, 3)]; + } + { + E TJ, T2V, TP, T2i, TU, T2G; + TJ = FNMS(TF, TI, TD); + T2V = T2h * T2l; + TP = TL * TO; + T2i = TS - TT; + TU = TS + TT; + T2G = FMA(TF, TC, T2F); + { + E T2g, T2j, TV, T2H; + T2g = FMA(Ty, T2f, T2e); + T2j = T2h * T2i; + TV = FNMS(TR, TU, TP); + T2H = TL * TU; + { + E T2U, T2m, T2I, T2W; + T2U = FNMS(Ty, T2d, T2T); + T2m = FMA(T2k, T2l, T2j); + TW = TJ + TV; + T3E = TJ - TV; + T2I = FMA(TR, TO, T2H); + T2W = FNMS(T2k, T2i, T2V); + T3J = T2m - T2g; + T2n = T2g + T2m; + T3D = T2G - T2I; + T2J = T2G + T2I; + T3M = T2U - T2W; + T2X = T2U + T2W; + } + } + } + } + } + { + E T3Y, T3x, T3X, T3y, T3r, T3q, T3p, T3u; + { + E T2Y, T3o, TX, T3s, T3i, T39, T3t, T3l, T3e, T1x, T2M, T2p, T3d, T2K, T2t; + E T2y; + { + E T2o, T1Z, T3j, T3k, T1i, T1w, T3g, T3h; + T2Y = T2S + T2X; + T3g = T2X - T2S; + T3h = T2c - T2n; + T2o = T2c + T2n; + T1Z = T1N + T1Y; + T3j = T1Y - T1N; + T3o = Tv - TW; + TX = Tv + TW; + T3s = T3g - T3h; + T3i = T3g + T3h; + T3k = T38 - T33; + T39 = T33 + T38; + T3Y = T17 - T1h; + T1i = T17 + T1h; + T1w = T1s + T1v; + T3x = T1v - T1s; + T3t = T3j + T3k; + T3l = T3j - T3k; + T3e = T1w - T1i; + T1x = T1i + T1w; + T2M = T2o + T1Z; + T2p = T1Z - T2o; + T3d = T2J - T2E; + T2K = T2E + T2J; + T3X = T2q - T2s; + T2t = T2q + T2s; + T2y = T2v + T2x; + T3y = T2v - T2x; + } + { + E T2N, T3c, T3a, T3n, T3b, T2L, T2z, T1y; + T2N = T1x - TX; + T1y = TX + T1x; + T3c = T2Y + T39; + T3a = T2Y - T39; + T3n = T2t - T2y; + T2z = T2t + T2y; + Ip[0] = KP500000000 * (T1y + T2p); + Im[WS(rs, 7)] = KP500000000 * (T2p - T1y); + T3b = T2z + T2K; + T2L = T2z - T2K; + { + E T3f, T3m, T3v, T3w; + T3r = T3e - T3d; + T3f = T3d + T3e; + Im[WS(rs, 3)] = KP500000000 * (T3a - T2N); + Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a); + Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M); + Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M); + Rp[0] = KP500000000 * (T3b + T3c); + Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c); + T3m = T3i + T3l; + T3q = T3l - T3i; + T3p = T3n - T3o; + T3v = T3n + T3o; + T3w = T3s + T3t; + T3u = T3s - T3t; + Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f))); + Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f)); + Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v)); + Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v)); + } + } + } + { + E T3R, T4b, T3z, T4q, T4g, T3U, T40, T41, T4r, T4j, T4m, T3G, T46, T3O, T4l; + E T3Z, T4c; + { + E T3K, T3N, T4h, T4i, T3C, T3F, T4e, T4f; + Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p)); + Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p)); + Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r))); + Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r)); + T3K = T3I + T3J; + T4e = T3I - T3J; + T4f = T3M - T3L; + T3N = T3L + T3M; + T3R = T3P - T3Q; + T4h = T3Q + T3P; + T4b = T3y + T3x; + T3z = T3x - T3y; + T4q = FNMS(KP414213562, T4e, T4f); + T4g = FMA(KP414213562, T4f, T4e); + T4i = T3T - T3S; + T3U = T3S + T3T; + T40 = T3B + T3A; + T3C = T3A - T3B; + T3F = T3D + T3E; + T41 = T3D - T3E; + T4r = FNMS(KP414213562, T4h, T4i); + T4j = FMA(KP414213562, T4i, T4h); + T4m = T3C - T3F; + T3G = T3C + T3F; + T46 = FNMS(KP414213562, T3K, T3N); + T3O = FMA(KP414213562, T3N, T3K); + T4l = T3X - T3Y; + T3Z = T3X + T3Y; + } + { + E T45, T3H, T42, T47, T3V; + T45 = FNMS(KP707106781, T3G, T3z); + T3H = FMA(KP707106781, T3G, T3z); + T4c = T41 - T40; + T42 = T40 + T41; + T47 = FMA(KP414213562, T3R, T3U); + T3V = FNMS(KP414213562, T3U, T3R); + { + E T49, T43, T48, T4a, T44, T3W; + T49 = FMA(KP707106781, T42, T3Z); + T43 = FNMS(KP707106781, T42, T3Z); + T48 = T46 - T47; + T4a = T46 + T47; + T44 = T3V - T3O; + T3W = T3O + T3V; + Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49)); + Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49)); + Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43)); + Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43)); + Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H))); + Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H)); + Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45)); + Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45))); + } + } + { + E T4d, T4k, T4t, T4u; + T4p = FMA(KP707106781, T4c, T4b); + T4d = FNMS(KP707106781, T4c, T4b); + T4k = T4g - T4j; + T4o = T4g + T4j; + T4n = FMA(KP707106781, T4m, T4l); + T4t = FNMS(KP707106781, T4m, T4l); + T4u = T4q + T4r; + T4s = T4q - T4r; + Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d))); + Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d)); + Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t)); + Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t)); + } + } + } + } + } + Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n)); + Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n)); + Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p))); + Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p)); + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {136, 74, 92, 0} }; + +void X(codelet_hc2cfdft2_16) (planner *p) { + X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include hc2cf.h */ + +/* + * This function contains 228 FP additions, 124 FP multiplications, + * (or, 188 additions, 84 multiplications, 40 fused multiply/add), + * 91 stack variables, 4 constants, and 64 memory accesses + */ +#include "hc2cf.h" + +static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP461939766, +0.461939766255643378064091594698394143411208313); + DK(KP191341716, +0.191341716182544885864229992015199433380672281); + DK(KP353553390, +0.353553390593273762200422181052424519642417969); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { + E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h; + E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b; + { + E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ; + { + E T3, Tc, T6, Tb; + T1 = W[0]; + T4 = W[1]; + T2 = W[2]; + T5 = W[3]; + T3 = T1 * T2; + Tc = T4 * T2; + T6 = T4 * T5; + Tb = T1 * T5; + T7 = T3 + T6; + Td = Tb - Tc; + T12 = Tb + Tc; + TY = T3 - T6; + Tk = W[5]; + Tl = T4 * Tk; + TP = T2 * Tk; + Tq = T1 * Tk; + TK = T5 * Tk; + Ti = W[4]; + Tj = T1 * Ti; + TQ = T5 * Ti; + Tr = T4 * Ti; + TJ = T2 * Ti; + } + Tm = Tj - Tl; + T1l = Tq - Tr; + T1b = TP + TQ; + TL = TJ + TK; + T1h = Tj + Tl; + Ts = Tq + Tr; + TR = TP - TQ; + T17 = TJ - TK; + Ty = W[6]; + Tz = W[7]; + TA = FMA(T1, Ty, T4 * Tz); + TE = FNMS(T4, Ty, T1 * Tz); + { + E T1J, T1K, T1F, T1G; + T1J = TY * Tk; + T1K = T12 * Ti; + T1L = T1J - T1K; + T1Q = T1J + T1K; + T1F = TY * Ti; + T1G = T12 * Tk; + T1H = T1F + T1G; + T1O = T1F - T1G; + } + { + E T22, T23, T1Y, T1Z; + T22 = T7 * Tk; + T23 = Td * Ti; + T24 = T22 + T23; + T2d = T22 - T23; + T1Y = T7 * Ti; + T1Z = Td * Tk; + T20 = T1Y - T1Z; + T2b = T1Y + T1Z; + } + } + { + E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o; + E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p; + E T2v, T3e; + { + E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k; + { + E T1i, T1j, T1m, T1n; + T1i = Ip[WS(rs, 4)]; + T1j = Im[WS(rs, 4)]; + T1k = T1i - T1j; + T1C = T1i + T1j; + T1m = Rp[WS(rs, 4)]; + T1n = Rm[WS(rs, 4)]; + T1o = T1m + T1n; + T1B = T1m - T1n; + } + { + E T1q, T1r, T1w, T1x; + T1q = Ip[0]; + T1r = Im[0]; + T1s = T1q - T1r; + T1z = T1q + T1r; + T1w = Rm[0]; + T1x = Rp[0]; + T1y = T1w - T1x; + T2j = T1x + T1w; + } + T1p = FNMS(T1l, T1o, T1h * T1k); + T1t = T1p + T1s; + T3i = T1s - T1p; + T2k = FMA(T1h, T1o, T1l * T1k); + T2l = T2j + T2k; + T3B = T2j - T2k; + { + E T1A, T1D, T2K, T2L; + T1A = FNMS(T4, T1z, T1 * T1y); + T1D = FMA(Ti, T1B, Tk * T1C); + T1E = T1A - T1D; + T3t = T1D + T1A; + T2K = FNMS(Tk, T1B, Ti * T1C); + T2L = FMA(T4, T1y, T1 * T1z); + T2M = T2K + T2L; + T3x = T2L - T2K; + } + } + { + E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P; + { + E TZ, T10, T13, T14; + TZ = Ip[WS(rs, 2)]; + T10 = Im[WS(rs, 2)]; + T11 = TZ - T10; + T1M = TZ + T10; + T13 = Rp[WS(rs, 2)]; + T14 = Rm[WS(rs, 2)]; + T15 = T13 + T14; + T1I = T13 - T14; + } + { + E T18, T19, T1c, T1d; + T18 = Ip[WS(rs, 6)]; + T19 = Im[WS(rs, 6)]; + T1a = T18 - T19; + T1R = T18 + T19; + T1c = Rp[WS(rs, 6)]; + T1d = Rm[WS(rs, 6)]; + T1e = T1c + T1d; + T1P = T1c - T1d; + } + { + E T16, T1f, T2H, T2I; + T16 = FNMS(T12, T15, TY * T11); + T1f = FNMS(T1b, T1e, T17 * T1a); + T1g = T16 + T1f; + T3C = T16 - T1f; + T2H = FNMS(T1L, T1I, T1H * T1M); + T2I = FNMS(T1Q, T1P, T1O * T1R); + T2J = T2H + T2I; + T3u = T2H - T2I; + } + { + E T1N, T1S, T2m, T2n; + T1N = FMA(T1H, T1I, T1L * T1M); + T1S = FMA(T1O, T1P, T1Q * T1R); + T1T = T1N + T1S; + T3w = T1S - T1N; + T2m = FMA(TY, T15, T12 * T11); + T2n = FMA(T17, T1e, T1b * T1a); + T2o = T2m + T2n; + T3j = T2m - T2n; + } + } + { + E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21; + { + E T8, T9, Te, Tf; + T8 = Ip[WS(rs, 1)]; + T9 = Im[WS(rs, 1)]; + Ta = T8 - T9; + T1W = T8 + T9; + Te = Rp[WS(rs, 1)]; + Tf = Rm[WS(rs, 1)]; + Tg = Te + Tf; + T1V = Te - Tf; + } + { + E Tn, To, Tt, Tu; + Tn = Ip[WS(rs, 5)]; + To = Im[WS(rs, 5)]; + Tp = Tn - To; + T25 = Tn + To; + Tt = Rp[WS(rs, 5)]; + Tu = Rm[WS(rs, 5)]; + Tv = Tt + Tu; + T21 = Tt - Tu; + } + { + E Th, Tw, T2A, T2B; + Th = FNMS(Td, Tg, T7 * Ta); + Tw = FNMS(Ts, Tv, Tm * Tp); + Tx = Th + Tw; + T3b = Th - Tw; + T2A = FNMS(T5, T1V, T2 * T1W); + T2B = FNMS(T24, T21, T20 * T25); + T2C = T2A + T2B; + T3q = T2A - T2B; + } + { + E T1X, T26, T2q, T2r; + T1X = FMA(T2, T1V, T5 * T1W); + T26 = FMA(T20, T21, T24 * T25); + T27 = T1X + T26; + T3m = T26 - T1X; + T2q = FMA(T7, Tg, Td * Ta); + T2r = FMA(Tm, Tv, Ts * Tp); + T2s = T2q + T2r; + T3c = T2q - T2r; + } + } + { + E TD, T29, TH, T28, TO, T2e, TU, T2c; + { + E TB, TC, TF, TG; + TB = Ip[WS(rs, 7)]; + TC = Im[WS(rs, 7)]; + TD = TB - TC; + T29 = TB + TC; + TF = Rp[WS(rs, 7)]; + TG = Rm[WS(rs, 7)]; + TH = TF + TG; + T28 = TF - TG; + } + { + E TM, TN, TS, TT; + TM = Ip[WS(rs, 3)]; + TN = Im[WS(rs, 3)]; + TO = TM - TN; + T2e = TM + TN; + TS = Rp[WS(rs, 3)]; + TT = Rm[WS(rs, 3)]; + TU = TS + TT; + T2c = TS - TT; + } + { + E TI, TV, T2D, T2E; + TI = FNMS(TE, TH, TA * TD); + TV = FNMS(TR, TU, TL * TO); + TW = TI + TV; + T3f = TI - TV; + T2D = FNMS(Tz, T28, Ty * T29); + T2E = FNMS(T2d, T2c, T2b * T2e); + T2F = T2D + T2E; + T3n = T2D - T2E; + } + { + E T2a, T2f, T2t, T2u; + T2a = FMA(Ty, T28, Tz * T29); + T2f = FMA(T2b, T2c, T2d * T2e); + T2g = T2a + T2f; + T3p = T2f - T2a; + T2t = FMA(TA, TH, TE * TD); + T2u = FMA(TL, TU, TR * TO); + T2v = T2t + T2u; + T3e = T2t - T2u; + } + } + { + E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P; + { + E TX, T1u, T2G, T2N; + TX = Tx + TW; + T1u = T1g + T1t; + T1v = TX + T1u; + T2z = T1u - TX; + T2G = T2C + T2F; + T2N = T2J + T2M; + T2O = T2G - T2N; + T2Q = T2G + T2N; + } + { + E T1U, T2h, T2p, T2w; + T1U = T1E - T1T; + T2h = T27 + T2g; + T2i = T1U - T2h; + T2y = T2h + T1U; + T2p = T2l + T2o; + T2w = T2s + T2v; + T2x = T2p - T2w; + T2P = T2p + T2w; + } + Ip[0] = KP500000000 * (T1v + T2i); + Rp[0] = KP500000000 * (T2P + T2Q); + Im[WS(rs, 7)] = KP500000000 * (T2i - T1v); + Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q); + Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y); + Im[WS(rs, 3)] = KP500000000 * (T2O - T2z); + Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); + Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O); + } + { + E T2T, T35, T33, T39, T2W, T36, T2Z, T37; + { + E T2R, T2S, T31, T32; + T2R = T2v - T2s; + T2S = T1t - T1g; + T2T = KP500000000 * (T2R + T2S); + T35 = KP500000000 * (T2S - T2R); + T31 = T2l - T2o; + T32 = Tx - TW; + T33 = KP500000000 * (T31 - T32); + T39 = KP500000000 * (T31 + T32); + } + { + E T2U, T2V, T2X, T2Y; + T2U = T2F - T2C; + T2V = T27 - T2g; + T2W = T2U + T2V; + T36 = T2U - T2V; + T2X = T1T + T1E; + T2Y = T2M - T2J; + T2Z = T2X - T2Y; + T37 = T2X + T2Y; + } + { + E T30, T3a, T34, T38; + T30 = KP353553390 * (T2W + T2Z); + Ip[WS(rs, 2)] = T2T + T30; + Im[WS(rs, 5)] = T30 - T2T; + T3a = KP353553390 * (T36 + T37); + Rm[WS(rs, 5)] = T39 - T3a; + Rp[WS(rs, 2)] = T39 + T3a; + T34 = KP353553390 * (T2Z - T2W); + Rm[WS(rs, 1)] = T33 - T34; + Rp[WS(rs, 6)] = T33 + T34; + T38 = KP353553390 * (T36 - T37); + Ip[WS(rs, 6)] = T35 + T38; + Im[WS(rs, 1)] = T38 - T35; + } + } + { + E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z; + E T3L; + { + E T3d, T3g, T3o, T3r; + T3k = KP500000000 * (T3i - T3j); + T3Q = KP500000000 * (T3j + T3i); + T3Z = KP500000000 * (T3B - T3C); + T3D = KP500000000 * (T3B + T3C); + T3d = T3b - T3c; + T3g = T3e + T3f; + T3h = KP353553390 * (T3d + T3g); + T40 = KP353553390 * (T3d - T3g); + { + E T3V, T3W, T3E, T3F; + T3V = T3u + T3t; + T3W = T3x - T3w; + T3X = FNMS(KP461939766, T3W, KP191341716 * T3V); + T45 = FMA(KP461939766, T3V, KP191341716 * T3W); + T3E = T3c + T3b; + T3F = T3e - T3f; + T3G = KP353553390 * (T3E + T3F); + T3P = KP353553390 * (T3F - T3E); + } + T3o = T3m + T3n; + T3r = T3p - T3q; + T3s = FMA(KP191341716, T3o, KP461939766 * T3r); + T3K = FNMS(KP191341716, T3r, KP461939766 * T3o); + { + E T3S, T3T, T3v, T3y; + T3S = T3n - T3m; + T3T = T3q + T3p; + T3U = FMA(KP461939766, T3S, KP191341716 * T3T); + T44 = FNMS(KP461939766, T3T, KP191341716 * T3S); + T3v = T3t - T3u; + T3y = T3w + T3x; + T3z = FNMS(KP191341716, T3y, KP461939766 * T3v); + T3L = FMA(KP191341716, T3v, KP461939766 * T3y); + } + } + { + E T3l, T3A, T3N, T3O; + T3l = T3h + T3k; + T3A = T3s + T3z; + Ip[WS(rs, 1)] = T3l + T3A; + Im[WS(rs, 6)] = T3A - T3l; + T3N = T3D + T3G; + T3O = T3K + T3L; + Rm[WS(rs, 6)] = T3N - T3O; + Rp[WS(rs, 1)] = T3N + T3O; + } + { + E T3H, T3I, T3J, T3M; + T3H = T3D - T3G; + T3I = T3z - T3s; + Rm[WS(rs, 2)] = T3H - T3I; + Rp[WS(rs, 5)] = T3H + T3I; + T3J = T3k - T3h; + T3M = T3K - T3L; + Ip[WS(rs, 5)] = T3J + T3M; + Im[WS(rs, 2)] = T3M - T3J; + } + { + E T3R, T3Y, T47, T48; + T3R = T3P + T3Q; + T3Y = T3U + T3X; + Ip[WS(rs, 3)] = T3R + T3Y; + Im[WS(rs, 4)] = T3Y - T3R; + T47 = T3Z + T40; + T48 = T44 + T45; + Rm[WS(rs, 4)] = T47 - T48; + Rp[WS(rs, 3)] = T47 + T48; + } + { + E T41, T42, T43, T46; + T41 = T3Z - T40; + T42 = T3X - T3U; + Rm[0] = T41 - T42; + Rp[WS(rs, 7)] = T41 + T42; + T43 = T3Q - T3P; + T46 = T44 - T45; + Ip[WS(rs, 7)] = T43 + T46; + Im[0] = T46 - T43; + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, {188, 84, 40, 0} }; + +void X(codelet_hc2cfdft2_16) (planner *p) { + X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */