Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cf/hc2cf_6.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cf/hc2cf_6.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,290 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:40:30 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cf_6 -include hc2cf.h */ + +/* + * This function contains 46 FP additions, 32 FP multiplications, + * (or, 24 additions, 10 multiplications, 22 fused multiply/add), + * 47 stack variables, 2 constants, and 24 memory accesses + */ +#include "hc2cf.h" + +static void hc2cf_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { + E TY, TU, T10, TZ; + { + E T1, TX, TW, T7, Tn, Tq, TJ, TS, TB, Tl, To, TK, Tt, Tw, Ts; + E Tp, Tv; + T1 = Rp[0]; + TX = Rm[0]; + { + E T3, T6, T2, T5; + T3 = Ip[WS(rs, 1)]; + T6 = Im[WS(rs, 1)]; + T2 = W[4]; + T5 = W[5]; + { + E Ta, Td, Tg, TF, Tb, Tj, Tf, Tc, Ti, TV, T4, T9; + Ta = Rp[WS(rs, 1)]; + Td = Rm[WS(rs, 1)]; + TV = T2 * T6; + T4 = T2 * T3; + T9 = W[2]; + Tg = Ip[WS(rs, 2)]; + TW = FNMS(T5, T3, TV); + T7 = FMA(T5, T6, T4); + TF = T9 * Td; + Tb = T9 * Ta; + Tj = Im[WS(rs, 2)]; + Tf = W[8]; + Tc = W[3]; + Ti = W[9]; + { + E TG, Te, TI, Tk, TH, Th, Tm; + Tn = Rp[WS(rs, 2)]; + TH = Tf * Tj; + Th = Tf * Tg; + TG = FNMS(Tc, Ta, TF); + Te = FMA(Tc, Td, Tb); + TI = FNMS(Ti, Tg, TH); + Tk = FMA(Ti, Tj, Th); + Tq = Rm[WS(rs, 2)]; + Tm = W[6]; + TJ = TG + TI; + TS = TI - TG; + TB = Te + Tk; + Tl = Te - Tk; + To = Tm * Tn; + TK = Tm * Tq; + } + Tt = Ip[0]; + Tw = Im[0]; + Ts = W[0]; + Tp = W[7]; + Tv = W[1]; + } + } + { + E TA, T8, TL, Tr, TN, Tx, T12, TM, Tu; + TA = T1 + T7; + T8 = T1 - T7; + TM = Ts * Tw; + Tu = Ts * Tt; + TL = FNMS(Tp, Tn, TK); + Tr = FMA(Tp, Tq, To); + TN = FNMS(Tv, Tt, TM); + Tx = FMA(Tv, Tw, Tu); + T12 = TX - TW; + TY = TW + TX; + { + E TP, TT, TD, TQ, TE, Tz, T14, T13; + { + E TO, TR, TC, Ty, T11; + TO = TL + TN; + TR = TN - TL; + TC = Tr + Tx; + Ty = Tr - Tx; + TP = TJ - TO; + TU = TJ + TO; + TT = TR - TS; + T11 = TS + TR; + Tz = Tl + Ty; + T14 = Ty - Tl; + Im[WS(rs, 2)] = T11 - T12; + T13 = FMA(KP500000000, T11, T12); + T10 = TB - TC; + TD = TB + TC; + } + Rm[WS(rs, 2)] = T8 + Tz; + TQ = FNMS(KP500000000, Tz, T8); + Im[0] = FMS(KP866025403, T14, T13); + Ip[WS(rs, 1)] = FMA(KP866025403, T14, T13); + TE = FNMS(KP500000000, TD, TA); + Rm[0] = FNMS(KP866025403, TT, TQ); + Rp[WS(rs, 1)] = FMA(KP866025403, TT, TQ); + Rp[0] = TA + TD; + Rm[WS(rs, 1)] = FMA(KP866025403, TP, TE); + Rp[WS(rs, 2)] = FNMS(KP866025403, TP, TE); + } + } + } + Ip[0] = TU + TY; + TZ = FNMS(KP500000000, TU, TY); + Im[WS(rs, 1)] = FMS(KP866025403, T10, TZ); + Ip[WS(rs, 2)] = FMA(KP866025403, T10, TZ); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 6}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 6, "hc2cf_6", twinstr, &GENUS, {24, 10, 22, 0} }; + +void X(codelet_hc2cf_6) (planner *p) { + X(khc2c_register) (p, hc2cf_6, &desc, HC2C_VIA_RDFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cf_6 -include hc2cf.h */ + +/* + * This function contains 46 FP additions, 28 FP multiplications, + * (or, 32 additions, 14 multiplications, 14 fused multiply/add), + * 23 stack variables, 2 constants, and 24 memory accesses + */ +#include "hc2cf.h" + +static void hc2cf_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { + E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC; + { + E T1, TN, T6, TM; + T1 = Rp[0]; + TN = Rm[0]; + { + E T3, T5, T2, T4; + T3 = Ip[WS(rs, 1)]; + T5 = Im[WS(rs, 1)]; + T2 = W[4]; + T4 = W[5]; + T6 = FMA(T2, T3, T4 * T5); + TM = FNMS(T4, T3, T2 * T5); + } + T7 = T1 - T6; + TS = TN - TM; + Tv = T1 + T6; + TO = TM + TN; + } + { + E Tn, TD, Ts, TE; + { + E Tk, Tm, Tj, Tl; + Tk = Rp[WS(rs, 2)]; + Tm = Rm[WS(rs, 2)]; + Tj = W[6]; + Tl = W[7]; + Tn = FMA(Tj, Tk, Tl * Tm); + TD = FNMS(Tl, Tk, Tj * Tm); + } + { + E Tp, Tr, To, Tq; + Tp = Ip[0]; + Tr = Im[0]; + To = W[0]; + Tq = W[1]; + Ts = FMA(To, Tp, Tq * Tr); + TE = FNMS(Tq, Tp, To * Tr); + } + Tt = Tn - Ts; + TJ = TE - TD; + Tx = Tn + Ts; + TF = TD + TE; + } + { + E Tc, TA, Th, TB; + { + E T9, Tb, T8, Ta; + T9 = Rp[WS(rs, 1)]; + Tb = Rm[WS(rs, 1)]; + T8 = W[2]; + Ta = W[3]; + Tc = FMA(T8, T9, Ta * Tb); + TA = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = Ip[WS(rs, 2)]; + Tg = Im[WS(rs, 2)]; + Td = W[8]; + Tf = W[9]; + Th = FMA(Td, Te, Tf * Tg); + TB = FNMS(Tf, Te, Td * Tg); + } + Ti = Tc - Th; + TI = TA - TB; + Tw = Tc + Th; + TC = TA + TB; + } + { + E TK, Tu, TH, TT, TR, TU; + TK = KP866025403 * (TI + TJ); + Tu = Ti + Tt; + TH = FNMS(KP500000000, Tu, T7); + Rm[WS(rs, 2)] = T7 + Tu; + Rp[WS(rs, 1)] = TH + TK; + Rm[0] = TH - TK; + TT = KP866025403 * (Tt - Ti); + TR = TJ - TI; + TU = FMA(KP500000000, TR, TS); + Im[WS(rs, 2)] = TR - TS; + Ip[WS(rs, 1)] = TT + TU; + Im[0] = TT - TU; + } + { + E TG, Ty, Tz, TP, TL, TQ; + TG = KP866025403 * (TC - TF); + Ty = Tw + Tx; + Tz = FNMS(KP500000000, Ty, Tv); + Rp[0] = Tv + Ty; + Rm[WS(rs, 1)] = Tz + TG; + Rp[WS(rs, 2)] = Tz - TG; + TP = KP866025403 * (Tw - Tx); + TL = TC + TF; + TQ = FNMS(KP500000000, TL, TO); + Ip[0] = TL + TO; + Ip[WS(rs, 2)] = TP + TQ; + Im[WS(rs, 1)] = TP - TQ; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 6}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 6, "hc2cf_6", twinstr, &GENUS, {32, 14, 14, 0} }; + +void X(codelet_hc2cf_6) (planner *p) { + X(khc2c_register) (p, hc2cf_6, &desc, HC2C_VIA_RDFT); +} +#endif /* HAVE_FMA */