diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_20.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_20.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,365 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:41:09 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */
+
+/*
+ * This function contains 86 FP additions, 44 FP multiplications,
+ * (or, 42 additions, 0 multiplications, 44 fused multiply/add),
+ * 69 stack variables, 5 constants, and 40 memory accesses
+ */
+#include "r2cb.h"
+
+static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
+     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
+	       E TY, T1o, T1m, T14, T12, TX, T1n, T1j, TZ, T13;
+	       {
+		    E Tr, TD, Tl, T5, T1a, T1l, T1d, T1k, TT, T10, TO, T11, TE, TF, Tk;
+		    E TI, TC, T1i, To, TG, T16;
+		    {
+			 E T4, Tq, T1, T2;
+			 T4 = Cr[WS(csr, 5)];
+			 Tq = Ci[WS(csi, 5)];
+			 T1 = Cr[0];
+			 T2 = Cr[WS(csr, 10)];
+			 {
+			      E Ts, T8, T19, TR, T18, Tb, TS, Tv, Tx, Tf, Ty, T1c, TM, T1b, Ti;
+			      E Tz, Tt, Tu, TN, TA;
+			      {
+				   E TP, TQ, T9, Ta;
+				   {
+					E T6, T7, Tp, T3;
+					T6 = Cr[WS(csr, 4)];
+					T7 = Cr[WS(csr, 6)];
+					TP = Ci[WS(csi, 4)];
+					Tp = T1 - T2;
+					T3 = T1 + T2;
+					Ts = T6 - T7;
+					T8 = T6 + T7;
+					Tr = FMA(KP2_000000000, Tq, Tp);
+					TD = FNMS(KP2_000000000, Tq, Tp);
+					Tl = FMA(KP2_000000000, T4, T3);
+					T5 = FNMS(KP2_000000000, T4, T3);
+					TQ = Ci[WS(csi, 6)];
+				   }
+				   T9 = Cr[WS(csr, 9)];
+				   Ta = Cr[WS(csr, 1)];
+				   Tt = Ci[WS(csi, 9)];
+				   T19 = TP + TQ;
+				   TR = TP - TQ;
+				   T18 = T9 - Ta;
+				   Tb = T9 + Ta;
+				   Tu = Ci[WS(csi, 1)];
+			      }
+			      {
+				   E TK, TL, Td, Te, Tg, Th;
+				   Td = Cr[WS(csr, 8)];
+				   Te = Cr[WS(csr, 2)];
+				   TK = Ci[WS(csi, 8)];
+				   TS = Tt - Tu;
+				   Tv = Tt + Tu;
+				   Tx = Td - Te;
+				   Tf = Td + Te;
+				   TL = Ci[WS(csi, 2)];
+				   Tg = Cr[WS(csr, 7)];
+				   Th = Cr[WS(csr, 3)];
+				   Ty = Ci[WS(csi, 7)];
+				   T1c = TK + TL;
+				   TM = TK - TL;
+				   T1b = Tg - Th;
+				   Ti = Tg + Th;
+				   Tz = Ci[WS(csi, 3)];
+			      }
+			      T1a = T18 + T19;
+			      T1l = T19 - T18;
+			      T1d = T1b + T1c;
+			      T1k = T1c - T1b;
+			      TT = TR - TS;
+			      T10 = TS + TR;
+			      TN = Tz - Ty;
+			      TA = Ty + Tz;
+			      TO = TM - TN;
+			      T11 = TN + TM;
+			      {
+				   E Tm, Tc, Tj, Tn, Tw, TB;
+				   Tm = T8 + Tb;
+				   Tc = T8 - Tb;
+				   Tj = Tf - Ti;
+				   Tn = Tf + Ti;
+				   TE = Ts - Tv;
+				   Tw = Ts + Tv;
+				   TB = Tx - TA;
+				   TF = Tx + TA;
+				   Tk = Tc + Tj;
+				   TI = Tc - Tj;
+				   TC = Tw + TB;
+				   T1i = Tw - TB;
+				   TY = Tm - Tn;
+				   To = Tm + Tn;
+			      }
+			 }
+		    }
+		    R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5);
+		    R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr);
+		    TG = TE + TF;
+		    T16 = TE - TF;
+		    R0[0] = FMA(KP2_000000000, To, Tl);
+		    {
+			 E TU, TW, T1g, T1e, T15, TV, TJ, TH, T1h, T1f, T17;
+			 TU = FNMS(KP618033988, TT, TO);
+			 TW = FMA(KP618033988, TO, TT);
+			 R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD);
+			 TH = FNMS(KP500000000, Tk, T5);
+			 T1g = FNMS(KP618033988, T1a, T1d);
+			 T1e = FMA(KP618033988, T1d, T1a);
+			 T15 = FNMS(KP500000000, TG, TD);
+			 TV = FMA(KP1_118033988, TI, TH);
+			 TJ = FNMS(KP1_118033988, TI, TH);
+			 T1o = FMA(KP618033988, T1k, T1l);
+			 T1m = FNMS(KP618033988, T1l, T1k);
+			 R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV);
+			 R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV);
+			 R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ);
+			 R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ);
+			 T1f = FNMS(KP1_118033988, T16, T15);
+			 T17 = FMA(KP1_118033988, T16, T15);
+			 T1h = FNMS(KP500000000, TC, Tr);
+			 R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f);
+			 R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f);
+			 R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17);
+			 R1[0] = FNMS(KP1_902113032, T1e, T17);
+			 T14 = FNMS(KP618033988, T10, T11);
+			 T12 = FMA(KP618033988, T11, T10);
+			 TX = FNMS(KP500000000, To, Tl);
+			 T1n = FMA(KP1_118033988, T1i, T1h);
+			 T1j = FNMS(KP1_118033988, T1i, T1h);
+		    }
+	       }
+	       R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n);
+	       R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n);
+	       R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j);
+	       R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j);
+	       TZ = FMA(KP1_118033988, TY, TX);
+	       T13 = FNMS(KP1_118033988, TY, TX);
+	       R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13);
+	       R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13);
+	       R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ);
+	       R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ);
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 20, "r2cb_20", {42, 0, 44, 0}, &GENUS };
+
+void X(codelet_r2cb_20) (planner *p) {
+     X(kr2c_register) (p, r2cb_20, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include r2cb.h */
+
+/*
+ * This function contains 86 FP additions, 30 FP multiplications,
+ * (or, 70 additions, 14 multiplications, 16 fused multiply/add),
+ * 50 stack variables, 5 constants, and 40 memory accesses
+ */
+#include "r2cb.h"
+
+static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
+     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
+	       E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl;
+	       E Ty, TD, TE, Tn, To, Tp, TG, TH, TI;
+	       {
+		    E T5, Ts, T3, Tq;
+		    {
+			 E T4, Tr, T1, T2;
+			 T4 = Cr[WS(csr, 5)];
+			 T5 = KP2_000000000 * T4;
+			 Tr = Ci[WS(csi, 5)];
+			 Ts = KP2_000000000 * Tr;
+			 T1 = Cr[0];
+			 T2 = Cr[WS(csr, 10)];
+			 T3 = T1 + T2;
+			 Tq = T1 - T2;
+		    }
+		    T6 = T3 - T5;
+		    TF = Tq - Ts;
+		    Tm = T3 + T5;
+		    Tt = Tq + Ts;
+	       }
+	       {
+		    E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC;
+		    E TU;
+		    {
+			 E T7, T8, TM, TN;
+			 T7 = Cr[WS(csr, 4)];
+			 T8 = Cr[WS(csr, 6)];
+			 T9 = T7 + T8;
+			 Tu = T7 - T8;
+			 TM = Ci[WS(csi, 4)];
+			 TN = Ci[WS(csi, 6)];
+			 TO = TM - TN;
+			 T1b = TM + TN;
+		    }
+		    {
+			 E Ta, Tb, Tv, Tw;
+			 Ta = Cr[WS(csr, 9)];
+			 Tb = Cr[WS(csr, 1)];
+			 Tc = Ta + Tb;
+			 T1a = Ta - Tb;
+			 Tv = Ci[WS(csi, 9)];
+			 Tw = Ci[WS(csi, 1)];
+			 Tx = Tv + Tw;
+			 TP = Tv - Tw;
+		    }
+		    {
+			 E Te, Tf, TR, TS;
+			 Te = Cr[WS(csr, 8)];
+			 Tf = Cr[WS(csr, 2)];
+			 Tg = Te + Tf;
+			 Tz = Te - Tf;
+			 TR = Ci[WS(csi, 8)];
+			 TS = Ci[WS(csi, 2)];
+			 TT = TR - TS;
+			 T1e = TR + TS;
+		    }
+		    {
+			 E Th, Ti, TA, TB;
+			 Th = Cr[WS(csr, 7)];
+			 Ti = Cr[WS(csr, 3)];
+			 Tj = Th + Ti;
+			 T1d = Th - Ti;
+			 TA = Ci[WS(csi, 7)];
+			 TB = Ci[WS(csi, 3)];
+			 TC = TA + TB;
+			 TU = TB - TA;
+		    }
+		    TQ = TO - TP;
+		    T1n = T1e - T1d;
+		    T1f = T1d + T1e;
+		    T12 = TP + TO;
+		    T1m = T1b - T1a;
+		    TV = TT - TU;
+		    T13 = TU + TT;
+		    T1c = T1a + T1b;
+		    Td = T9 - Tc;
+		    Tk = Tg - Tj;
+		    Tl = Td + Tk;
+		    Ty = Tu + Tx;
+		    TD = Tz - TC;
+		    TE = Ty + TD;
+		    Tn = T9 + Tc;
+		    To = Tg + Tj;
+		    Tp = Tn + To;
+		    TG = Tu - Tx;
+		    TH = Tz + TC;
+		    TI = TG + TH;
+	       }
+	       R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6);
+	       R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt);
+	       R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF);
+	       R0[0] = FMA(KP2_000000000, Tp, Tm);
+	       {
+		    E TW, TY, TL, TX, TJ, TK;
+		    TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ);
+		    TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV);
+		    TJ = FNMS(KP500000000, Tl, T6);
+		    TK = KP1_118033988 * (Td - Tk);
+		    TL = TJ - TK;
+		    TX = TK + TJ;
+		    R0[WS(rs, 1)] = TL - TW;
+		    R0[WS(rs, 7)] = TX + TY;
+		    R0[WS(rs, 9)] = TL + TW;
+		    R0[WS(rs, 3)] = TX - TY;
+	       }
+	       {
+		    E T1g, T1i, T19, T1h, T17, T18;
+		    T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c);
+		    T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f);
+		    T17 = FNMS(KP500000000, TI, TF);
+		    T18 = KP1_118033988 * (TG - TH);
+		    T19 = T17 - T18;
+		    T1h = T18 + T17;
+		    R1[WS(rs, 8)] = T19 - T1g;
+		    R1[WS(rs, 4)] = T1h + T1i;
+		    R1[WS(rs, 6)] = T19 + T1g;
+		    R1[0] = T1h - T1i;
+	       }
+	       {
+		    E T1o, T1q, T1l, T1p, T1j, T1k;
+		    T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m);
+		    T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n);
+		    T1j = FNMS(KP500000000, TE, Tt);
+		    T1k = KP1_118033988 * (Ty - TD);
+		    T1l = T1j - T1k;
+		    T1p = T1k + T1j;
+		    R1[WS(rs, 3)] = T1l - T1o;
+		    R1[WS(rs, 9)] = T1p + T1q;
+		    R1[WS(rs, 1)] = T1l + T1o;
+		    R1[WS(rs, 5)] = T1p - T1q;
+	       }
+	       {
+		    E T14, T16, T11, T15, TZ, T10;
+		    T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12);
+		    T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13);
+		    TZ = FNMS(KP500000000, Tp, Tm);
+		    T10 = KP1_118033988 * (Tn - To);
+		    T11 = TZ - T10;
+		    T15 = T10 + TZ;
+		    R0[WS(rs, 6)] = T11 - T14;
+		    R0[WS(rs, 2)] = T15 + T16;
+		    R0[WS(rs, 4)] = T11 + T14;
+		    R0[WS(rs, 8)] = T15 - T16;
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 20, "r2cb_20", {70, 14, 16, 0}, &GENUS };
+
+void X(codelet_r2cb_20) (planner *p) {
+     X(kr2c_register) (p, r2cb_20, &desc);
+}
+
+#endif				/* HAVE_FMA */