Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_13.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_13.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,370 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:08 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ + +/* + * This function contains 76 FP additions, 58 FP multiplications, + * (or, 18 additions, 0 multiplications, 58 fused multiply/add), + * 76 stack variables, 26 constants, and 26 memory accesses + */ +#include "r2cb.h" + +static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP968287244, +0.968287244361984016049539446938120421179794516); + DK(KP875502302, +0.875502302409147941146295545768755143177842006); + DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); + DK(KP1_040057143, +1.040057143777729238234261000998465604986476278); + DK(KP1_200954543, +1.200954543865330565851538506669526018704025697); + DK(KP769338817, +0.769338817572980603471413688209101117038278899); + DK(KP600925212, +0.600925212577331548853203544578415991041882762); + DK(KP1_033041561, +1.033041561246979445681802577138034271410067244); + DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); + DK(KP503537032, +0.503537032863766627246873853868466977093348562); + DK(KP581704778, +0.581704778510515730456870384989698884939833902); + DK(KP859542535, +0.859542535098774820163672132761689612766401925); + DK(KP166666666, +0.166666666666666666666666666666666666666666667); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP301479260, +0.301479260047709873958013540496673347309208464); + DK(KP226109445, +0.226109445035782405468510155372505010481906348); + DK(KP686558370, +0.686558370781754340655719594850823015421401653); + DK(KP514918778, +0.514918778086315755491789696138117261566051239); + DK(KP957805992, +0.957805992594665126462521754605754580515587217); + DK(KP522026385, +0.522026385161275033714027226654165028300441940); + DK(KP853480001, +0.853480001859823990758994934970528322872359049); + DK(KP038632954, +0.038632954644348171955506895830342264440241080); + DK(KP612264650, +0.612264650376756543746494474777125408779395514); + DK(KP302775637, +0.302775637731994646559610633735247973125648287); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { + E TW, T14, TS, TO, T18, T1e, TY, TX, TQ, Tq, TP, Tl, T1d, Tr; + { + E T1, TN, T16, TJ, TV, TG, TU, Tf, T2, T3, Tb, Ti, T4; + { + E Ts, TB, Tx, Ty, Tv, TE, Tt, Tu, Tz, TC; + Ts = Ci[WS(csi, 5)]; + Tt = Ci[WS(csi, 2)]; + Tu = Ci[WS(csi, 6)]; + TB = Ci[WS(csi, 1)]; + Tx = Ci[WS(csi, 3)]; + Ty = Ci[WS(csi, 4)]; + Tv = Tt + Tu; + TE = Tu - Tt; + T1 = Cr[0]; + Tz = Tx + Ty; + TC = Tx - Ty; + { + E TL, Tw, T7, Ta; + TL = Ts + Tv; + Tw = FNMS(KP500000000, Tv, Ts); + T7 = Cr[WS(csr, 5)]; + { + E TD, TM, TA, TH; + TD = FNMS(KP500000000, TC, TB); + TM = TB + TC; + TA = FMA(KP866025403, Tz, Tw); + TH = FNMS(KP866025403, Tz, Tw); + TN = FMA(KP302775637, TM, TL); + T16 = FNMS(KP302775637, TL, TM); + { + E TF, TI, T8, T9; + TF = FMA(KP866025403, TE, TD); + TI = FNMS(KP866025403, TE, TD); + T8 = Cr[WS(csr, 2)]; + T9 = Cr[WS(csr, 6)]; + TJ = FNMS(KP612264650, TI, TH); + TV = FMA(KP612264650, TH, TI); + TG = FNMS(KP038632954, TF, TA); + TU = FMA(KP038632954, TA, TF); + Tf = T8 - T9; + Ta = T8 + T9; + } + } + T2 = Cr[WS(csr, 1)]; + T3 = Cr[WS(csr, 3)]; + Tb = T7 + Ta; + Ti = FMS(KP500000000, Ta, T7); + T4 = Cr[WS(csr, 4)]; + } + } + { + E T17, TK, T5, Te, Tk, Td; + TW = FMA(KP853480001, TV, TU); + T17 = FNMS(KP853480001, TV, TU); + TK = FNMS(KP853480001, TJ, TG); + T14 = FMA(KP853480001, TJ, TG); + T5 = T3 + T4; + Te = T3 - T4; + { + E Tn, Tg, Th, T6; + TS = FNMS(KP522026385, TK, TN); + TO = FMA(KP957805992, TN, TK); + Tn = Te - Tf; + Tg = Te + Tf; + Th = FNMS(KP500000000, T5, T2); + T6 = T2 + T5; + T18 = FNMS(KP522026385, T17, T16); + T1e = FMA(KP957805992, T16, T17); + { + E Tm, Tj, Tc, Tp, To; + Tm = Th + Ti; + Tj = Th - Ti; + Tc = T6 + Tb; + Tp = T6 - Tb; + To = FNMS(KP514918778, Tn, Tm); + TY = FMA(KP686558370, Tm, Tn); + TX = FNMS(KP226109445, Tg, Tj); + Tk = FMA(KP301479260, Tj, Tg); + R0[0] = FMA(KP2_000000000, Tc, T1); + Td = FNMS(KP166666666, Tc, T1); + TQ = FNMS(KP859542535, To, Tp); + Tq = FMA(KP581704778, Tp, To); + } + } + TP = FNMS(KP503537032, Tk, Td); + Tl = FMA(KP1_007074065, Tk, Td); + } + } + T1d = FNMS(KP1_033041561, Tq, Tl); + Tr = FMA(KP1_033041561, Tq, Tl); + { + E T13, TR, T19, TZ; + T13 = FNMS(KP600925212, TQ, TP); + TR = FMA(KP600925212, TQ, TP); + T19 = FMA(KP769338817, TY, TX); + TZ = FNMS(KP769338817, TY, TX); + R0[WS(rs, 4)] = FMA(KP1_200954543, T1e, T1d); + R1[WS(rs, 2)] = FNMS(KP1_200954543, T1e, T1d); + R0[WS(rs, 6)] = FMA(KP1_200954543, TO, Tr); + R1[0] = FNMS(KP1_200954543, TO, Tr); + { + E T1b, T15, T11, TT; + T1b = FNMS(KP1_040057143, T14, T13); + T15 = FMA(KP1_040057143, T14, T13); + T11 = FMA(KP1_150281458, TS, TR); + TT = FNMS(KP1_150281458, TS, TR); + { + E T1c, T1a, T12, T10; + T1c = FMA(KP875502302, T19, T18); + T1a = FNMS(KP875502302, T19, T18); + T12 = FMA(KP968287244, TZ, TW); + T10 = FNMS(KP968287244, TZ, TW); + R1[WS(rs, 5)] = FMA(KP1_150281458, T1c, T1b); + R0[WS(rs, 3)] = FNMS(KP1_150281458, T1c, T1b); + R1[WS(rs, 3)] = FMA(KP1_150281458, T1a, T15); + R0[WS(rs, 1)] = FNMS(KP1_150281458, T1a, T15); + R0[WS(rs, 5)] = FMA(KP1_040057143, T12, T11); + R0[WS(rs, 2)] = FNMS(KP1_040057143, T12, T11); + R1[WS(rs, 4)] = FMA(KP1_040057143, T10, TT); + R1[WS(rs, 1)] = FNMS(KP1_040057143, T10, TT); + } + } + } + } + } +} + +static const kr2c_desc desc = { 13, "r2cb_13", {18, 0, 58, 0}, &GENUS }; + +void X(codelet_r2cb_13) (planner *p) { + X(kr2c_register) (p, r2cb_13, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 13 -name r2cb_13 -include r2cb.h */ + +/* + * This function contains 76 FP additions, 35 FP multiplications, + * (or, 56 additions, 15 multiplications, 20 fused multiply/add), + * 56 stack variables, 19 constants, and 26 memory accesses + */ +#include "r2cb.h" + +static void r2cb_13(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_007074065, +1.007074065727533254493747707736933954186697125); + DK(KP227708958, +0.227708958111581597949308691735310621069285120); + DK(KP531932498, +0.531932498429674575175042127684371897596660533); + DK(KP774781170, +0.774781170935234584261351932853525703557550433); + DK(KP265966249, +0.265966249214837287587521063842185948798330267); + DK(KP516520780, +0.516520780623489722840901288569017135705033622); + DK(KP151805972, +0.151805972074387731966205794490207080712856746); + DK(KP503537032, +0.503537032863766627246873853868466977093348562); + DK(KP166666666, +0.166666666666666666666666666666666666666666667); + DK(KP600925212, +0.600925212577331548853203544578415991041882762); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP256247671, +0.256247671582936600958684654061725059144125175); + DK(KP156891391, +0.156891391051584611046832726756003269660212636); + DK(KP348277202, +0.348277202304271810011321589858529485233929352); + DK(KP1_150281458, +1.150281458948006242736771094910906776922003215); + DK(KP300238635, +0.300238635966332641462884626667381504676006424); + DK(KP011599105, +0.011599105605768290721655456654083252189827041); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(52, rs), MAKE_VOLATILE_STRIDE(52, csr), MAKE_VOLATILE_STRIDE(52, csi)) { + E TG, TS, TR, T15, TJ, TT, T1, Tm, Tc, Td, Tg, Tj, Tk, Tn, To; + E Tp; + { + E Ts, Tv, Tw, TE, TC, TB, Tz, TD, TA, TF; + { + E Tt, Tu, Tx, Ty; + Ts = Ci[WS(csi, 1)]; + Tt = Ci[WS(csi, 3)]; + Tu = Ci[WS(csi, 4)]; + Tv = Tt - Tu; + Tw = FMS(KP2_000000000, Ts, Tv); + TE = KP1_732050807 * (Tt + Tu); + TC = Ci[WS(csi, 5)]; + Tx = Ci[WS(csi, 6)]; + Ty = Ci[WS(csi, 2)]; + TB = Tx + Ty; + Tz = KP1_732050807 * (Tx - Ty); + TD = FNMS(KP2_000000000, TC, TB); + } + TA = Tw + Tz; + TF = TD - TE; + TG = FMA(KP011599105, TA, KP300238635 * TF); + TS = FNMS(KP011599105, TF, KP300238635 * TA); + { + E TP, TQ, TH, TI; + TP = Ts + Tv; + TQ = TB + TC; + TR = FNMS(KP348277202, TQ, KP1_150281458 * TP); + T15 = FMA(KP348277202, TP, KP1_150281458 * TQ); + TH = Tw - Tz; + TI = TE + TD; + TJ = FMA(KP156891391, TH, KP256247671 * TI); + TT = FNMS(KP256247671, TH, KP156891391 * TI); + } + } + { + E Tb, Ti, Tf, T6, Th, Te; + T1 = Cr[0]; + { + E T7, T8, T9, Ta; + T7 = Cr[WS(csr, 5)]; + T8 = Cr[WS(csr, 2)]; + T9 = Cr[WS(csr, 6)]; + Ta = T8 + T9; + Tb = T7 + Ta; + Ti = FNMS(KP500000000, Ta, T7); + Tf = T8 - T9; + } + { + E T2, T3, T4, T5; + T2 = Cr[WS(csr, 1)]; + T3 = Cr[WS(csr, 3)]; + T4 = Cr[WS(csr, 4)]; + T5 = T3 + T4; + T6 = T2 + T5; + Th = FNMS(KP500000000, T5, T2); + Te = T3 - T4; + } + Tm = KP600925212 * (T6 - Tb); + Tc = T6 + Tb; + Td = FNMS(KP166666666, Tc, T1); + Tg = Te + Tf; + Tj = Th + Ti; + Tk = FMA(KP503537032, Tg, KP151805972 * Tj); + Tn = Th - Ti; + To = Te - Tf; + Tp = FNMS(KP265966249, To, KP516520780 * Tn); + } + R0[0] = FMA(KP2_000000000, Tc, T1); + { + E TK, T1b, TV, T12, T16, T18, TO, T1a, Tr, T17, T11, T13; + { + E TU, T14, TM, TN; + TK = KP1_732050807 * (TG + TJ); + T1b = KP1_732050807 * (TS - TT); + TU = TS + TT; + TV = TR - TU; + T12 = FMA(KP2_000000000, TU, TR); + T14 = TG - TJ; + T16 = FMS(KP2_000000000, T14, T15); + T18 = T14 + T15; + TM = FMA(KP774781170, To, KP531932498 * Tn); + TN = FNMS(KP1_007074065, Tj, KP227708958 * Tg); + TO = TM - TN; + T1a = TM + TN; + { + E Tl, Tq, TZ, T10; + Tl = Td - Tk; + Tq = Tm - Tp; + Tr = Tl - Tq; + T17 = Tq + Tl; + TZ = FMA(KP2_000000000, Tk, Td); + T10 = FMA(KP2_000000000, Tp, Tm); + T11 = TZ - T10; + T13 = T10 + TZ; + } + } + R1[WS(rs, 2)] = T11 - T12; + R0[WS(rs, 6)] = T13 - T16; + R1[0] = T13 + T16; + R0[WS(rs, 4)] = T11 + T12; + { + E TL, TW, T19, T1c; + TL = Tr - TK; + TW = TO - TV; + R1[WS(rs, 3)] = TL - TW; + R0[WS(rs, 1)] = TL + TW; + T19 = T17 - T18; + T1c = T1a + T1b; + R1[WS(rs, 1)] = T19 - T1c; + R1[WS(rs, 4)] = T1c + T19; + } + { + E T1d, T1e, TX, TY; + T1d = T1a - T1b; + T1e = T17 + T18; + R0[WS(rs, 2)] = T1d + T1e; + R0[WS(rs, 5)] = T1e - T1d; + TX = Tr + TK; + TY = TO + TV; + R0[WS(rs, 3)] = TX - TY; + R1[WS(rs, 5)] = TX + TY; + } + } + } + } +} + +static const kr2c_desc desc = { 13, "r2cb_13", {56, 15, 20, 0}, &GENUS }; + +void X(codelet_r2cb_13) (planner *p) { + X(kr2c_register) (p, r2cb_13, &desc); +} + +#endif /* HAVE_FMA */