diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_10.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cb_10.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,208 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:41:07 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
+
+/*
+ * This function contains 34 FP additions, 20 FP multiplications,
+ * (or, 14 additions, 0 multiplications, 20 fused multiply/add),
+ * 30 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "r2cb.h"
+
+static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
+     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
+	       E Tb, T3, Tc, T6, Tq, To, Ty, Tw, Td, T9;
+	       {
+		    E Tu, Tn, T7, Tv, Tk, T8;
+		    {
+			 E T1, T2, Tl, Tm;
+			 T1 = Cr[0];
+			 T2 = Cr[WS(csr, 5)];
+			 Tl = Ci[WS(csi, 2)];
+			 Tm = Ci[WS(csi, 3)];
+			 {
+			      E Ti, Tj, T4, T5;
+			      Ti = Ci[WS(csi, 4)];
+			      Tb = T1 + T2;
+			      T3 = T1 - T2;
+			      Tu = Tl + Tm;
+			      Tn = Tl - Tm;
+			      Tj = Ci[WS(csi, 1)];
+			      T4 = Cr[WS(csr, 2)];
+			      T5 = Cr[WS(csr, 3)];
+			      T7 = Cr[WS(csr, 4)];
+			      Tv = Ti + Tj;
+			      Tk = Ti - Tj;
+			      Tc = T4 + T5;
+			      T6 = T4 - T5;
+			      T8 = Cr[WS(csr, 1)];
+			 }
+		    }
+		    Tq = FMA(KP618033988, Tk, Tn);
+		    To = FNMS(KP618033988, Tn, Tk);
+		    Ty = FNMS(KP618033988, Tu, Tv);
+		    Tw = FMA(KP618033988, Tv, Tu);
+		    Td = T7 + T8;
+		    T9 = T7 - T8;
+	       }
+	       {
+		    E Te, Tg, Ta, Ts, Tf, Tr;
+		    Te = Tc + Td;
+		    Tg = Tc - Td;
+		    Ta = T6 + T9;
+		    Ts = T6 - T9;
+		    Tf = FNMS(KP500000000, Te, Tb);
+		    R0[0] = FMA(KP2_000000000, Te, Tb);
+		    Tr = FNMS(KP500000000, Ta, T3);
+		    R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
+		    {
+			 E Th, Tp, Tt, Tx;
+			 Th = FNMS(KP1_118033988, Tg, Tf);
+			 Tp = FMA(KP1_118033988, Tg, Tf);
+			 Tt = FMA(KP1_118033988, Ts, Tr);
+			 Tx = FNMS(KP1_118033988, Ts, Tr);
+			 R0[WS(rs, 3)] = FNMS(KP1_902113032, Tq, Tp);
+			 R0[WS(rs, 2)] = FMA(KP1_902113032, Tq, Tp);
+			 R0[WS(rs, 1)] = FMA(KP1_902113032, To, Th);
+			 R0[WS(rs, 4)] = FNMS(KP1_902113032, To, Th);
+			 R1[WS(rs, 1)] = FNMS(KP1_902113032, Ty, Tx);
+			 R1[WS(rs, 3)] = FMA(KP1_902113032, Ty, Tx);
+			 R1[WS(rs, 4)] = FMA(KP1_902113032, Tw, Tt);
+			 R1[0] = FNMS(KP1_902113032, Tw, Tt);
+		    }
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 10, "r2cb_10", {14, 0, 20, 0}, &GENUS };
+
+void X(codelet_r2cb_10) (planner *p) {
+     X(kr2c_register) (p, r2cb_10, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cb_10 -include r2cb.h */
+
+/*
+ * This function contains 34 FP additions, 14 FP multiplications,
+ * (or, 26 additions, 6 multiplications, 8 fused multiply/add),
+ * 26 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "r2cb.h"
+
+static void r2cb_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
+     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
+	       E T3, Tb, Tn, Tv, Tk, Tu, Ta, Ts, Te, Tg, Ti, Tj;
+	       {
+		    E T1, T2, Tl, Tm;
+		    T1 = Cr[0];
+		    T2 = Cr[WS(csr, 5)];
+		    T3 = T1 - T2;
+		    Tb = T1 + T2;
+		    Tl = Ci[WS(csi, 4)];
+		    Tm = Ci[WS(csi, 1)];
+		    Tn = Tl - Tm;
+		    Tv = Tl + Tm;
+	       }
+	       Ti = Ci[WS(csi, 2)];
+	       Tj = Ci[WS(csi, 3)];
+	       Tk = Ti - Tj;
+	       Tu = Ti + Tj;
+	       {
+		    E T6, Tc, T9, Td;
+		    {
+			 E T4, T5, T7, T8;
+			 T4 = Cr[WS(csr, 2)];
+			 T5 = Cr[WS(csr, 3)];
+			 T6 = T4 - T5;
+			 Tc = T4 + T5;
+			 T7 = Cr[WS(csr, 4)];
+			 T8 = Cr[WS(csr, 1)];
+			 T9 = T7 - T8;
+			 Td = T7 + T8;
+		    }
+		    Ta = T6 + T9;
+		    Ts = KP1_118033988 * (T6 - T9);
+		    Te = Tc + Td;
+		    Tg = KP1_118033988 * (Tc - Td);
+	       }
+	       R1[WS(rs, 2)] = FMA(KP2_000000000, Ta, T3);
+	       R0[0] = FMA(KP2_000000000, Te, Tb);
+	       {
+		    E To, Tq, Th, Tp, Tf;
+		    To = FNMS(KP1_902113032, Tn, KP1_175570504 * Tk);
+		    Tq = FMA(KP1_902113032, Tk, KP1_175570504 * Tn);
+		    Tf = FNMS(KP500000000, Te, Tb);
+		    Th = Tf - Tg;
+		    Tp = Tg + Tf;
+		    R0[WS(rs, 1)] = Th - To;
+		    R0[WS(rs, 2)] = Tp + Tq;
+		    R0[WS(rs, 4)] = Th + To;
+		    R0[WS(rs, 3)] = Tp - Tq;
+	       }
+	       {
+		    E Tw, Ty, Tt, Tx, Tr;
+		    Tw = FNMS(KP1_902113032, Tv, KP1_175570504 * Tu);
+		    Ty = FMA(KP1_902113032, Tu, KP1_175570504 * Tv);
+		    Tr = FNMS(KP500000000, Ta, T3);
+		    Tt = Tr - Ts;
+		    Tx = Ts + Tr;
+		    R1[WS(rs, 3)] = Tt - Tw;
+		    R1[WS(rs, 4)] = Tx + Ty;
+		    R1[WS(rs, 1)] = Tt + Tw;
+		    R1[0] = Tx - Ty;
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 10, "r2cb_10", {26, 6, 8, 0}, &GENUS };
+
+void X(codelet_r2cb_10) (planner *p) {
+     X(kr2c_register) (p, r2cb_10, &desc);
+}
+
+#endif				/* HAVE_FMA */