Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_9.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_9.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,211 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:35 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include r2cbIII.h */ + +/* + * This function contains 32 FP additions, 24 FP multiplications, + * (or, 8 additions, 0 multiplications, 24 fused multiply/add), + * 40 stack variables, 12 constants, and 18 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); + DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); + DK(KP839099631, +0.839099631177280011763127298123181364687434283); + DK(KP176326980, +0.176326980708464973471090386868618986121633062); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T4, Td, T3, Th, Tr, Tm, T7, Tc, Tj, Tg, T1, T2; + Tg = Ci[WS(csi, 1)]; + T1 = Cr[WS(csr, 4)]; + T2 = Cr[WS(csr, 1)]; + T4 = Cr[WS(csr, 3)]; + Td = Ci[WS(csi, 3)]; + { + E T5, Tf, T6, Ta, Tb; + T5 = Cr[0]; + Tf = T2 - T1; + T3 = FMA(KP2_000000000, T2, T1); + T6 = Cr[WS(csr, 2)]; + Ta = Ci[WS(csi, 2)]; + Tb = Ci[0]; + Th = FNMS(KP1_732050807, Tg, Tf); + Tr = FMA(KP1_732050807, Tg, Tf); + Tm = T5 - T6; + T7 = T5 + T6; + Tc = Ta - Tb; + Tj = Tb + Ta; + } + { + E Tw, Tq, Tv, Tp, Ti, T8; + Ti = FNMS(KP500000000, T7, T4); + T8 = T4 + T7; + { + E Te, Tl, Tt, Tk, T9; + Te = Tc - Td; + Tl = FMA(KP500000000, Tc, Td); + Tt = FNMS(KP866025403, Tj, Ti); + Tk = FMA(KP866025403, Tj, Ti); + T9 = T8 - T3; + R0[0] = FMA(KP2_000000000, T8, T3); + { + E Ts, Tn, Tu, To; + Ts = FMA(KP866025403, Tm, Tl); + Tn = FNMS(KP866025403, Tm, Tl); + R0[WS(rs, 3)] = FMS(KP1_732050807, Te, T9); + R1[WS(rs, 1)] = FMA(KP1_732050807, Te, T9); + Tu = FMA(KP176326980, Tt, Ts); + Tw = FNMS(KP176326980, Ts, Tt); + To = FMA(KP839099631, Tn, Tk); + Tq = FNMS(KP839099631, Tk, Tn); + R0[WS(rs, 1)] = FMS(KP1_969615506, Tu, Tr); + Tv = FMA(KP984807753, Tu, Tr); + R1[0] = FNMS(KP1_532088886, To, Th); + Tp = FMA(KP766044443, To, Th); + } + } + R0[WS(rs, 4)] = FMS(KP1_705737063, Tw, Tv); + R1[WS(rs, 2)] = FMA(KP1_705737063, Tw, Tv); + R0[WS(rs, 2)] = FMS(KP1_326827896, Tq, Tp); + R1[WS(rs, 3)] = FMA(KP1_326827896, Tq, Tp); + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cbIII_9", {8, 0, 24, 0}, &GENUS }; + +void X(codelet_r2cbIII_9) (planner *p) { + X(kr2c_register) (p, r2cbIII_9, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include r2cbIII.h */ + +/* + * This function contains 32 FP additions, 18 FP multiplications, + * (or, 22 additions, 8 multiplications, 10 fused multiply/add), + * 35 stack variables, 12 constants, and 18 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); + DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); + DK(KP300767466, +0.300767466360870593278543795225003852144476517); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { + E T3, Ts, Ti, Td, Tc, T8, To, Tu, Tl, Tt, T9, Te; + { + E Th, T1, T2, Tf, Tg; + Tg = Ci[WS(csi, 1)]; + Th = KP1_732050807 * Tg; + T1 = Cr[WS(csr, 4)]; + T2 = Cr[WS(csr, 1)]; + Tf = T2 - T1; + T3 = FMA(KP2_000000000, T2, T1); + Ts = Tf - Th; + Ti = Tf + Th; + } + { + E T4, T7, Tm, Tk, Tn, Tj; + T4 = Cr[WS(csr, 3)]; + Td = Ci[WS(csi, 3)]; + { + E T5, T6, Ta, Tb; + T5 = Cr[0]; + T6 = Cr[WS(csr, 2)]; + T7 = T5 + T6; + Tm = KP866025403 * (T6 - T5); + Ta = Ci[WS(csi, 2)]; + Tb = Ci[0]; + Tc = Ta - Tb; + Tk = KP866025403 * (Tb + Ta); + } + T8 = T4 + T7; + Tn = FMA(KP500000000, Tc, Td); + To = Tm - Tn; + Tu = Tm + Tn; + Tj = FMS(KP500000000, T7, T4); + Tl = Tj + Tk; + Tt = Tj - Tk; + } + R0[0] = FMA(KP2_000000000, T8, T3); + T9 = T8 - T3; + Te = KP1_732050807 * (Tc - Td); + R1[WS(rs, 1)] = T9 + Te; + R0[WS(rs, 3)] = Te - T9; + { + E Tr, Tp, Tq, Tx, Tv, Tw; + Tr = FNMS(KP1_705737063, Tl, KP300767466 * To); + Tp = FMA(KP173648177, Tl, KP984807753 * To); + Tq = Ti - Tp; + R0[WS(rs, 1)] = -(FMA(KP2_000000000, Tp, Ti)); + R0[WS(rs, 4)] = Tr - Tq; + R1[WS(rs, 2)] = Tq + Tr; + Tx = FMA(KP1_113340798, Tt, KP1_326827896 * Tu); + Tv = FNMS(KP642787609, Tu, KP766044443 * Tt); + Tw = Tv - Ts; + R1[0] = FMA(KP2_000000000, Tv, Ts); + R1[WS(rs, 3)] = Tx - Tw; + R0[WS(rs, 2)] = Tw + Tx; + } + } + } +} + +static const kr2c_desc desc = { 9, "r2cbIII_9", {22, 8, 10, 0}, &GENUS }; + +void X(codelet_r2cbIII_9) (planner *p) { + X(kr2c_register) (p, r2cbIII_9, &desc); +} + +#endif /* HAVE_FMA */