Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_20.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_20.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,409 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:44 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */ + +/* + * This function contains 94 FP additions, 56 FP multiplications, + * (or, 58 additions, 20 multiplications, 36 fused multiply/add), + * 59 stack variables, 6 constants, and 40 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { + E TZ, TD, TW, Tw, Tt, TF, T1f, T1b; + { + E T1l, Tk, T9, Tj, Ta, TV, TI, Ts, TU, T1t, T11, Tx, T13, TC, T1a; + E T1i, Th, Tv, Ty; + { + E TQ, TS, Tr, Tm, Tn; + { + E T1, T5, T6, T2, T3, T7, TY; + T1 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 9)]; + T6 = Cr[WS(csr, 5)]; + T2 = Cr[WS(csr, 6)]; + T3 = Cr[WS(csr, 1)]; + TQ = Ci[WS(csi, 2)]; + T7 = T5 + T6; + TY = T5 - T6; + { + E T4, TX, T8, Tp, Tq; + T4 = T2 + T3; + TX = T2 - T3; + Tp = Ci[WS(csi, 5)]; + Tq = Ci[WS(csi, 9)]; + T1l = FNMS(KP618033988, TX, TY); + TZ = FMA(KP618033988, TY, TX); + Tk = T4 - T7; + T8 = T4 + T7; + TS = Tp + Tq; + Tr = Tp - Tq; + T9 = T1 + T8; + Tj = FNMS(KP250000000, T8, T1); + Tm = Ci[WS(csi, 6)]; + Tn = Ci[WS(csi, 1)]; + } + } + { + E Tb, T19, Tg, Tc; + Ta = Cr[WS(csr, 7)]; + { + E Te, Tf, To, TR, TT; + Te = Cr[0]; + Tf = Cr[WS(csr, 4)]; + To = Tm + Tn; + TR = Tm - Tn; + Tb = Cr[WS(csr, 3)]; + T19 = Te - Tf; + Tg = Te + Tf; + TT = TR - TS; + TV = TR + TS; + TI = FNMS(KP618033988, To, Tr); + Ts = FMA(KP618033988, Tr, To); + TU = FNMS(KP250000000, TT, TQ); + T1t = TT + TQ; + Tc = Cr[WS(csr, 8)]; + } + T11 = Ci[WS(csi, 7)]; + { + E TA, TB, Td, T18; + TA = Ci[WS(csi, 4)]; + TB = Ci[0]; + Td = Tb + Tc; + T18 = Tb - Tc; + Tx = Ci[WS(csi, 3)]; + T13 = TB + TA; + TC = TA - TB; + T1a = FMA(KP618033988, T19, T18); + T1i = FNMS(KP618033988, T18, T19); + Th = Td + Tg; + Tv = Td - Tg; + Ty = Ci[WS(csi, 8)]; + } + } + } + { + E Tu, T1w, T16, TL, T15, T1u; + { + E Ti, T12, Tz, T14; + Tu = FNMS(KP250000000, Th, Ta); + Ti = Ta + Th; + T12 = Tx - Ty; + Tz = Tx + Ty; + T1w = T9 - Ti; + T14 = T12 - T13; + T16 = T12 + T13; + TL = FNMS(KP618033988, Tz, TC); + TD = FMA(KP618033988, TC, Tz); + T15 = FNMS(KP250000000, T14, T11); + T1u = T14 + T11; + R0[0] = KP2_000000000 * (T9 + Ti); + } + { + E Tl, TJ, TN, T1q, T1m, TK, T1h, T17, TH, T1k, T1v; + Tl = FMA(KP559016994, Tk, Tj); + TH = FNMS(KP559016994, Tk, Tj); + T1k = FNMS(KP559016994, TV, TU); + TW = FMA(KP559016994, TV, TU); + R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t); + T1v = T1t + T1u; + TJ = FNMS(KP951056516, TI, TH); + TN = FMA(KP951056516, TI, TH); + T1q = FMA(KP951056516, T1l, T1k); + T1m = FNMS(KP951056516, T1l, T1k); + R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v); + R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w); + Tw = FMA(KP559016994, Tv, Tu); + TK = FNMS(KP559016994, Tv, Tu); + T1h = FNMS(KP559016994, T16, T15); + T17 = FMA(KP559016994, T16, T15); + { + E TM, TO, T1j, T1r; + TM = FMA(KP951056516, TL, TK); + TO = FNMS(KP951056516, TL, TK); + T1j = FMA(KP951056516, T1i, T1h); + T1r = FNMS(KP951056516, T1i, T1h); + Tt = FNMS(KP951056516, Ts, Tl); + TF = FMA(KP951056516, Ts, Tl); + { + E T1n, T1p, T1s, T1o; + T1n = TN - TO; + R0[WS(rs, 6)] = -(KP2_000000000 * (TN + TO)); + T1p = TM - TJ; + R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM); + T1s = T1q + T1r; + R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q); + T1o = T1m + T1j; + R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m); + R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s); + R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s); + R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o); + R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o); + T1f = FMA(KP951056516, T1a, T17); + T1b = FNMS(KP951056516, T1a, T17); + } + } + } + } + } + { + E TE, TG, T10, T1e; + TE = FMA(KP951056516, TD, Tw); + TG = FNMS(KP951056516, TD, Tw); + T10 = FMA(KP951056516, TZ, TW); + T1e = FNMS(KP951056516, TZ, TW); + { + E T1d, TP, T1g, T1c; + T1d = TF - TG; + R0[WS(rs, 2)] = -(KP2_000000000 * (TF + TG)); + TP = Tt - TE; + R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE); + T1g = T1e + T1f; + R0[WS(rs, 7)] = KP2_000000000 * (T1e - T1f); + T1c = T10 + T1b; + R0[WS(rs, 3)] = KP2_000000000 * (T10 - T1b); + R1[WS(rs, 9)] = -(KP1_414213562 * (T1d + T1g)); + R1[WS(rs, 4)] = KP1_414213562 * (T1d - T1g); + R1[WS(rs, 5)] = -(KP1_414213562 * (TP + T1c)); + R1[0] = KP1_414213562 * (TP - T1c); + } + } + } + } +} + +static const kr2c_desc desc = { 20, "r2cbIII_20", {58, 20, 36, 0}, &GENUS }; + +void X(codelet_r2cbIII_20) (planner *p) { + X(kr2c_register) (p, r2cbIII_20, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cbIII_20 -dft-III -include r2cbIII.h */ + +/* + * This function contains 94 FP additions, 44 FP multiplications, + * (or, 82 additions, 32 multiplications, 12 fused multiply/add), + * 43 stack variables, 6 constants, and 40 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { + E T1, Tj, T1k, T13, T8, Tk, T17, Ts, T16, TI, T18, T19, Ta, Tu, T1i; + E TS, Th, Tv, TX, TD, TV, TL, TW, TY; + { + E T7, T12, T4, T11; + T1 = Cr[WS(csr, 2)]; + { + E T5, T6, T2, T3; + T5 = Cr[WS(csr, 9)]; + T6 = Cr[WS(csr, 5)]; + T7 = T5 + T6; + T12 = T5 - T6; + T2 = Cr[WS(csr, 6)]; + T3 = Cr[WS(csr, 1)]; + T4 = T2 + T3; + T11 = T2 - T3; + } + Tj = KP559016994 * (T4 - T7); + T1k = FNMS(KP951056516, T12, KP587785252 * T11); + T13 = FMA(KP951056516, T11, KP587785252 * T12); + T8 = T4 + T7; + Tk = FNMS(KP250000000, T8, T1); + } + { + E Tr, T15, To, T14; + T17 = Ci[WS(csi, 2)]; + { + E Tp, Tq, Tm, Tn; + Tp = Ci[WS(csi, 5)]; + Tq = Ci[WS(csi, 9)]; + Tr = Tp - Tq; + T15 = Tp + Tq; + Tm = Ci[WS(csi, 6)]; + Tn = Ci[WS(csi, 1)]; + To = Tm + Tn; + T14 = Tm - Tn; + } + Ts = FMA(KP951056516, To, KP587785252 * Tr); + T16 = KP559016994 * (T14 + T15); + TI = FNMS(KP951056516, Tr, KP587785252 * To); + T18 = T14 - T15; + T19 = FNMS(KP250000000, T18, T17); + } + { + E Tg, TR, Td, TQ; + Ta = Cr[WS(csr, 7)]; + { + E Te, Tf, Tb, Tc; + Te = Cr[0]; + Tf = Cr[WS(csr, 4)]; + Tg = Te + Tf; + TR = Te - Tf; + Tb = Cr[WS(csr, 3)]; + Tc = Cr[WS(csr, 8)]; + Td = Tb + Tc; + TQ = Tb - Tc; + } + Tu = KP559016994 * (Td - Tg); + T1i = FNMS(KP951056516, TR, KP587785252 * TQ); + TS = FMA(KP951056516, TQ, KP587785252 * TR); + Th = Td + Tg; + Tv = FNMS(KP250000000, Th, Ta); + } + { + E TC, TU, Tz, TT; + TX = Ci[WS(csi, 7)]; + { + E TA, TB, Tx, Ty; + TA = Ci[WS(csi, 4)]; + TB = Ci[0]; + TC = TA - TB; + TU = TB + TA; + Tx = Ci[WS(csi, 3)]; + Ty = Ci[WS(csi, 8)]; + Tz = Tx + Ty; + TT = Ty - Tx; + } + TD = FMA(KP951056516, Tz, KP587785252 * TC); + TV = KP559016994 * (TT - TU); + TL = FNMS(KP587785252, Tz, KP951056516 * TC); + TW = TT + TU; + TY = FMA(KP250000000, TW, TX); + } + { + E T9, Ti, T1w, T1t, T1u, T1v; + T9 = T1 + T8; + Ti = Ta + Th; + T1w = T9 - Ti; + T1t = T18 + T17; + T1u = TX - TW; + T1v = T1t + T1u; + R0[0] = KP2_000000000 * (T9 + Ti); + R0[WS(rs, 5)] = KP2_000000000 * (T1u - T1t); + R1[WS(rs, 2)] = KP1_414213562 * (T1v - T1w); + R1[WS(rs, 7)] = KP1_414213562 * (T1w + T1v); + } + { + E TJ, TO, T1m, T1q, TM, TN, T1j, T1r; + { + E TH, T1l, TK, T1h; + TH = Tk - Tj; + TJ = TH + TI; + TO = TH - TI; + T1l = T19 - T16; + T1m = T1k + T1l; + T1q = T1l - T1k; + TK = Tv - Tu; + TM = TK + TL; + TN = TL - TK; + T1h = TV + TY; + T1j = T1h - T1i; + T1r = T1i + T1h; + } + R0[WS(rs, 4)] = KP2_000000000 * (TJ + TM); + R0[WS(rs, 6)] = KP2_000000000 * (TN - TO); + R0[WS(rs, 9)] = KP2_000000000 * (T1r - T1q); + R0[WS(rs, 1)] = KP2_000000000 * (T1j - T1m); + { + E T1p, T1s, T1n, T1o; + T1p = TM - TJ; + T1s = T1q + T1r; + R1[WS(rs, 1)] = KP1_414213562 * (T1p - T1s); + R1[WS(rs, 6)] = KP1_414213562 * (T1p + T1s); + T1n = TO + TN; + T1o = T1m + T1j; + R1[WS(rs, 8)] = KP1_414213562 * (T1n - T1o); + R1[WS(rs, 3)] = KP1_414213562 * (T1n + T1o); + } + } + { + E Tt, TG, T1b, T1f, TE, TF, T10, T1e; + { + E Tl, T1a, Tw, TZ; + Tl = Tj + Tk; + Tt = Tl - Ts; + TG = Tl + Ts; + T1a = T16 + T19; + T1b = T13 + T1a; + T1f = T1a - T13; + Tw = Tu + Tv; + TE = Tw + TD; + TF = TD - Tw; + TZ = TV - TY; + T10 = TS + TZ; + T1e = TZ - TS; + } + R0[WS(rs, 8)] = KP2_000000000 * (Tt + TE); + R0[WS(rs, 2)] = KP2_000000000 * (TF - TG); + R0[WS(rs, 7)] = KP2_000000000 * (T1f + T1e); + R0[WS(rs, 3)] = KP2_000000000 * (T1b + T10); + { + E T1d, T1g, TP, T1c; + T1d = TG + TF; + T1g = T1e - T1f; + R1[WS(rs, 4)] = KP1_414213562 * (T1d + T1g); + R1[WS(rs, 9)] = KP1_414213562 * (T1g - T1d); + TP = Tt - TE; + T1c = T10 - T1b; + R1[0] = KP1_414213562 * (TP + T1c); + R1[WS(rs, 5)] = KP1_414213562 * (T1c - TP); + } + } + } + } +} + +static const kr2c_desc desc = { 20, "r2cbIII_20", {82, 32, 12, 0}, &GENUS }; + +void X(codelet_r2cbIII_20) (planner *p) { + X(kr2c_register) (p, r2cbIII_20, &desc); +} + +#endif /* HAVE_FMA */