diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_10.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_10.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,195 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Sun Nov 25 07:41:35 EST 2012 */
+
+#include "codelet-rdft.h"
+
+#ifdef HAVE_FMA
+
+/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
+
+/*
+ * This function contains 32 FP additions, 28 FP multiplications,
+ * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
+ * 38 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "r2cbIII.h"
+
+static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
+	       E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv;
+	       {
+		    E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9;
+		    T1 = Cr[WS(csr, 2)];
+		    To = Ci[WS(csi, 2)];
+		    {
+			 E T2, T3, T5, T6;
+			 T2 = Cr[WS(csr, 4)];
+			 T3 = Cr[0];
+			 T5 = Cr[WS(csr, 3)];
+			 T6 = Cr[WS(csr, 1)];
+			 {
+			      E Tc, T4, T7, Td, Tf, Tg;
+			      Tc = Ci[WS(csi, 3)];
+			      Ts = T2 - T3;
+			      T4 = T2 + T3;
+			      Tt = T5 - T6;
+			      T7 = T5 + T6;
+			      Td = Ci[WS(csi, 1)];
+			      Tf = Ci[WS(csi, 4)];
+			      Tg = Ci[0];
+			      T8 = T4 + T7;
+			      Ta = T7 - T4;
+			      Te = Tc - Td;
+			      Tl = Tc + Td;
+			      Tm = Tf + Tg;
+			      Th = Tf - Tg;
+			 }
+		    }
+		    R0[0] = KP2_000000000 * (T1 + T8);
+		    Tn = Tl - Tm;
+		    Tq = Tl + Tm;
+		    Ti = FMA(KP618033988, Th, Te);
+		    Tk = FNMS(KP618033988, Te, Th);
+		    R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
+		    T9 = FMS(KP250000000, T8, T1);
+		    Tu = FMA(KP618033988, Tt, Ts);
+		    Tw = FNMS(KP618033988, Ts, Tt);
+		    Tp = FMA(KP250000000, Tn, To);
+		    Tb = FNMS(KP559016994, Ta, T9);
+		    Tj = FMA(KP559016994, Ta, T9);
+	       }
+	       Tr = FMA(KP559016994, Tq, Tp);
+	       Tv = FNMS(KP559016994, Tq, Tp);
+	       R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
+	       R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
+	       R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
+	       R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
+	       R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
+	       R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
+	       R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
+	       R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS };
+
+void X(codelet_r2cbIII_10) (planner *p) {
+     X(kr2c_register) (p, r2cbIII_10, &desc);
+}
+
+#else				/* HAVE_FMA */
+
+/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */
+
+/*
+ * This function contains 32 FP additions, 16 FP multiplications,
+ * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
+ * 22 stack variables, 5 constants, and 20 memory accesses
+ */
+#include "r2cbIII.h"
+
+static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
+     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
+	       E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
+	       T1 = Cr[WS(csr, 2)];
+	       To = Ci[WS(csi, 2)];
+	       {
+		    E T2, T3, T4, T5, T6, T7;
+		    T2 = Cr[WS(csr, 4)];
+		    T3 = Cr[0];
+		    T4 = T2 + T3;
+		    T5 = Cr[WS(csr, 3)];
+		    T6 = Cr[WS(csr, 1)];
+		    T7 = T5 + T6;
+		    T8 = T4 + T7;
+		    Tq = T5 - T6;
+		    Ta = KP1_118033988 * (T7 - T4);
+		    Tp = T2 - T3;
+	       }
+	       {
+		    E Tc, Td, Tm, Tf, Tg, Tl;
+		    Tc = Ci[WS(csi, 4)];
+		    Td = Ci[0];
+		    Tm = Tc + Td;
+		    Tf = Ci[WS(csi, 1)];
+		    Tg = Ci[WS(csi, 3)];
+		    Tl = Tg + Tf;
+		    Te = Tc - Td;
+		    Ts = KP1_118033988 * (Tl + Tm);
+		    Th = Tf - Tg;
+		    Tn = Tl - Tm;
+	       }
+	       R0[0] = KP2_000000000 * (T1 + T8);
+	       R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
+	       {
+		    E Ti, Tj, Tb, Tk, T9;
+		    Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
+		    Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
+		    T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
+		    Tb = T9 - Ta;
+		    Tk = T9 + Ta;
+		    R0[WS(rs, 1)] = Tb + Ti;
+		    R0[WS(rs, 3)] = Tk + Tj;
+		    R0[WS(rs, 4)] = Ti - Tb;
+		    R0[WS(rs, 2)] = Tj - Tk;
+	       }
+	       {
+		    E Tr, Tv, Tu, Tw, Tt;
+		    Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
+		    Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
+		    Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
+		    Tu = Ts + Tt;
+		    Tw = Tt - Ts;
+		    R1[0] = -(Tr + Tu);
+		    R1[WS(rs, 3)] = Tw - Tv;
+		    R1[WS(rs, 4)] = Tr - Tu;
+		    R1[WS(rs, 1)] = Tv + Tw;
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS };
+
+void X(codelet_r2cbIII_10) (planner *p) {
+     X(kr2c_register) (p, r2cbIII_10, &desc);
+}
+
+#endif				/* HAVE_FMA */