Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_10.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/r2cbIII_10.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:35 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */ + +/* + * This function contains 32 FP additions, 28 FP multiplications, + * (or, 14 additions, 10 multiplications, 18 fused multiply/add), + * 38 stack variables, 5 constants, and 20 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { + E Tq, Ti, Tk, Tu, Tw, Tp, Tb, Tj, Tr, Tv; + { + E T1, To, Ts, Tt, T8, Ta, Te, Tl, Tm, Th, Tn, T9; + T1 = Cr[WS(csr, 2)]; + To = Ci[WS(csi, 2)]; + { + E T2, T3, T5, T6; + T2 = Cr[WS(csr, 4)]; + T3 = Cr[0]; + T5 = Cr[WS(csr, 3)]; + T6 = Cr[WS(csr, 1)]; + { + E Tc, T4, T7, Td, Tf, Tg; + Tc = Ci[WS(csi, 3)]; + Ts = T2 - T3; + T4 = T2 + T3; + Tt = T5 - T6; + T7 = T5 + T6; + Td = Ci[WS(csi, 1)]; + Tf = Ci[WS(csi, 4)]; + Tg = Ci[0]; + T8 = T4 + T7; + Ta = T7 - T4; + Te = Tc - Td; + Tl = Tc + Td; + Tm = Tf + Tg; + Th = Tf - Tg; + } + } + R0[0] = KP2_000000000 * (T1 + T8); + Tn = Tl - Tm; + Tq = Tl + Tm; + Ti = FMA(KP618033988, Th, Te); + Tk = FNMS(KP618033988, Te, Th); + R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); + T9 = FMS(KP250000000, T8, T1); + Tu = FMA(KP618033988, Tt, Ts); + Tw = FNMS(KP618033988, Ts, Tt); + Tp = FMA(KP250000000, Tn, To); + Tb = FNMS(KP559016994, Ta, T9); + Tj = FMA(KP559016994, Ta, T9); + } + Tr = FMA(KP559016994, Tq, Tp); + Tv = FNMS(KP559016994, Tq, Tp); + R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj))); + R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj)); + R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb))); + R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb)); + R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv)); + R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv)); + R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr))); + R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr))); + } + } +} + +static const kr2c_desc desc = { 10, "r2cbIII_10", {14, 10, 18, 0}, &GENUS }; + +void X(codelet_r2cbIII_10) (planner *p) { + X(kr2c_register) (p, r2cbIII_10, &desc); +} + +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include r2cbIII.h */ + +/* + * This function contains 32 FP additions, 16 FP multiplications, + * (or, 26 additions, 10 multiplications, 6 fused multiply/add), + * 22 stack variables, 5 constants, and 20 memory accesses + */ +#include "r2cbIII.h" + +static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); + DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { + E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn; + T1 = Cr[WS(csr, 2)]; + To = Ci[WS(csi, 2)]; + { + E T2, T3, T4, T5, T6, T7; + T2 = Cr[WS(csr, 4)]; + T3 = Cr[0]; + T4 = T2 + T3; + T5 = Cr[WS(csr, 3)]; + T6 = Cr[WS(csr, 1)]; + T7 = T5 + T6; + T8 = T4 + T7; + Tq = T5 - T6; + Ta = KP1_118033988 * (T7 - T4); + Tp = T2 - T3; + } + { + E Tc, Td, Tm, Tf, Tg, Tl; + Tc = Ci[WS(csi, 4)]; + Td = Ci[0]; + Tm = Tc + Td; + Tf = Ci[WS(csi, 1)]; + Tg = Ci[WS(csi, 3)]; + Tl = Tg + Tf; + Te = Tc - Td; + Ts = KP1_118033988 * (Tl + Tm); + Th = Tf - Tg; + Tn = Tl - Tm; + } + R0[0] = KP2_000000000 * (T1 + T8); + R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); + { + E Ti, Tj, Tb, Tk, T9; + Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te); + Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te); + T9 = FNMS(KP2_000000000, T1, KP500000000 * T8); + Tb = T9 - Ta; + Tk = T9 + Ta; + R0[WS(rs, 1)] = Tb + Ti; + R0[WS(rs, 3)] = Tk + Tj; + R0[WS(rs, 4)] = Ti - Tb; + R0[WS(rs, 2)] = Tj - Tk; + } + { + E Tr, Tv, Tu, Tw, Tt; + Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq); + Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq); + Tt = FMA(KP500000000, Tn, KP2_000000000 * To); + Tu = Ts + Tt; + Tw = Tt - Ts; + R1[0] = -(Tr + Tu); + R1[WS(rs, 3)] = Tw - Tv; + R1[WS(rs, 4)] = Tr - Tu; + R1[WS(rs, 1)] = Tv + Tw; + } + } + } +} + +static const kr2c_desc desc = { 10, "r2cbIII_10", {26, 10, 6, 0}, &GENUS }; + +void X(codelet_r2cbIII_10) (planner *p) { + X(kr2c_register) (p, r2cbIII_10, &desc); +} + +#endif /* HAVE_FMA */