Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hc2cbdft_12.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,635 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:42:04 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */ + +/* + * This function contains 142 FP additions, 68 FP multiplications, + * (or, 96 additions, 22 multiplications, 46 fused multiply/add), + * 81 stack variables, 2 constants, and 48 memory accesses + */ +#include "hc2cb.h" + +static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E T2S, T2V, T2w, T2Z, T2T, T2I, T2Q, T2Y, T2U, T2K, T2G, T30, T2W; + { + E Tb, T1Z, T2D, T1E, T1N, T2y, TD, T2t, T1U, T1e, T2o, TY, T1f, TI, T1g; + E TN, Tm, T1V, T2z, T1H, T1Q, T2E, T19, T2u; + { + E T1c, TU, T1d, TX; + { + E Tu, T6, TT, TS, T5, Tt, Tw, Tx, TB, T9, Ty; + { + E T1, Tp, Tq, Tr, T4, T2, T3, T7, T8, Ts; + T1 = Rp[0]; + T2 = Rp[WS(rs, 4)]; + T3 = Rm[WS(rs, 3)]; + Tp = Ip[0]; + Tq = Ip[WS(rs, 4)]; + Tr = Im[WS(rs, 3)]; + T4 = T2 + T3; + Tu = T2 - T3; + T6 = Rm[WS(rs, 5)]; + TT = Tr + Tq; + Ts = Tq - Tr; + TS = FNMS(KP500000000, T4, T1); + T5 = T1 + T4; + T7 = Rm[WS(rs, 1)]; + T8 = Rp[WS(rs, 2)]; + T1c = Tp + Ts; + Tt = FNMS(KP500000000, Ts, Tp); + Tw = Im[WS(rs, 5)]; + Tx = Im[WS(rs, 1)]; + TB = T7 - T8; + T9 = T7 + T8; + Ty = Ip[WS(rs, 2)]; + } + { + E T1L, Tv, Ta, TV, TW, Tz; + T1L = FNMS(KP866025403, Tu, Tt); + Tv = FMA(KP866025403, Tu, Tt); + Ta = T6 + T9; + TV = FNMS(KP500000000, T9, T6); + TW = Tx + Ty; + Tz = Tx - Ty; + { + E TC, T1M, T1C, TA, T1D; + T1C = FMA(KP866025403, TT, TS); + TU = FNMS(KP866025403, TT, TS); + T1d = Tw + Tz; + TA = FNMS(KP500000000, Tz, Tw); + T1D = FNMS(KP866025403, TW, TV); + TX = FMA(KP866025403, TW, TV); + Tb = T5 + Ta; + T1Z = T5 - Ta; + TC = FNMS(KP866025403, TB, TA); + T1M = FMA(KP866025403, TB, TA); + T2D = T1C - T1D; + T1E = T1C + T1D; + T1N = T1L - T1M; + T2y = T1L + T1M; + TD = Tv + TC; + T2t = Tv - TC; + } + } + } + { + E T12, Th, TH, TE, Tg, T11, T14, TK, T17, Tk, TL; + { + E Tc, TZ, TF, TG, Tf, Td, Te, Ti, Tj, T10; + Tc = Rp[WS(rs, 3)]; + T1U = T1c + T1d; + T1e = T1c - T1d; + T2o = TU + TX; + TY = TU - TX; + Td = Rm[WS(rs, 4)]; + Te = Rm[0]; + TZ = Ip[WS(rs, 3)]; + TF = Im[WS(rs, 4)]; + TG = Im[0]; + Tf = Td + Te; + T12 = Td - Te; + Th = Rm[WS(rs, 2)]; + TH = TF - TG; + T10 = TF + TG; + TE = FNMS(KP500000000, Tf, Tc); + Tg = Tc + Tf; + Ti = Rp[WS(rs, 1)]; + Tj = Rp[WS(rs, 5)]; + T1f = TZ - T10; + T11 = FMA(KP500000000, T10, TZ); + T14 = Im[WS(rs, 2)]; + TK = Ip[WS(rs, 5)]; + T17 = Ti - Tj; + Tk = Ti + Tj; + TL = Ip[WS(rs, 1)]; + } + { + E T1O, T13, Tl, TJ, TM, T15; + T1O = FNMS(KP866025403, T12, T11); + T13 = FMA(KP866025403, T12, T11); + Tl = Th + Tk; + TJ = FNMS(KP500000000, Tk, Th); + TM = TK - TL; + T15 = TK + TL; + { + E T18, T1P, T1F, T16, T1G; + T1F = FNMS(KP866025403, TH, TE); + TI = FMA(KP866025403, TH, TE); + T1g = T15 - T14; + T16 = FMA(KP500000000, T15, T14); + T1G = FNMS(KP866025403, TM, TJ); + TN = FMA(KP866025403, TM, TJ); + Tm = Tg + Tl; + T1V = Tg - Tl; + T18 = FNMS(KP866025403, T17, T16); + T1P = FMA(KP866025403, T17, T16); + T2z = T1F - T1G; + T1H = T1F + T1G; + T1Q = T1O - T1P; + T2E = T1O + T1P; + T19 = T13 + T18; + T2u = T13 - T18; + } + } + } + } + { + E T20, T2p, T1v, T1s, T1q, T1y, T1u, T1z, T1t; + { + E T1m, Tn, T1a, T1p, T1i, To, TP, TR, T1h, TO; + T1m = Tb - Tm; + Tn = Tb + Tm; + T20 = T1f - T1g; + T1h = T1f + T1g; + T2p = TI + TN; + TO = TI - TN; + T1a = TY - T19; + T1v = TY + T19; + T1p = T1e - T1h; + T1i = T1e + T1h; + To = W[0]; + T1s = TD - TO; + TP = TD + TO; + TR = W[1]; + { + E T1l, T1o, T1n, T1x, T1r; + { + E T1j, TQ, T1k, T1b; + T1j = To * T1a; + TQ = To * TP; + T1l = W[10]; + T1k = FNMS(TR, TP, T1j); + T1b = FMA(TR, T1a, TQ); + T1o = W[11]; + T1n = T1l * T1m; + Im[0] = T1k - T1i; + Ip[0] = T1i + T1k; + Rm[0] = Tn + T1b; + Rp[0] = Tn - T1b; + T1x = T1o * T1m; + T1r = W[12]; + } + T1q = FNMS(T1o, T1p, T1n); + T1y = FMA(T1l, T1p, T1x); + T1u = W[13]; + T1z = T1r * T1v; + T1t = T1r * T1s; + } + } + { + E T2e, T2h, T1S, T2j, T2f, T26, T2c, T2m, T2g, T24, T22; + { + E T2b, T1R, T27, T2a, T1B, T29, T2l, T1K, T1J, T1W, T21, T25, T2d, T23, T1X; + E T1Y; + { + E T1I, T28, T1A, T1w, T1T; + T1A = FNMS(T1u, T1s, T1z); + T1w = FMA(T1u, T1v, T1t); + T1I = T1E - T1H; + T28 = T1E + T1H; + T2b = T1N + T1Q; + T1R = T1N - T1Q; + Im[WS(rs, 3)] = T1A - T1y; + Ip[WS(rs, 3)] = T1y + T1A; + Rm[WS(rs, 3)] = T1q + T1w; + Rp[WS(rs, 3)] = T1q - T1w; + T27 = W[14]; + T2a = W[15]; + T1B = W[2]; + T29 = T27 * T28; + T2l = T2a * T28; + T1K = W[3]; + T1J = T1B * T1I; + T1W = T1U - T1V; + T2e = T1V + T1U; + T2h = T1Z - T20; + T21 = T1Z + T20; + T25 = T1K * T1I; + T1T = W[4]; + T2d = W[16]; + T23 = T1T * T21; + T1X = T1T * T1W; + } + T1S = FNMS(T1K, T1R, T1J); + T2j = T2d * T2h; + T2f = T2d * T2e; + T26 = FMA(T1B, T1R, T25); + T1Y = W[5]; + T2c = FNMS(T2a, T2b, T29); + T2m = FMA(T27, T2b, T2l); + T2g = W[17]; + T24 = FNMS(T1Y, T1W, T23); + T22 = FMA(T1Y, T21, T1X); + } + { + E T2L, T2O, T2P, T2v, T2N, T2X, T2n, T2s, T2A, T2F, T2r, T2H, T2R, T2J, T2B; + E T2C; + { + E T2q, T2k, T2i, T2M, T2x; + T2k = FNMS(T2g, T2e, T2j); + T2i = FMA(T2g, T2h, T2f); + Im[WS(rs, 1)] = T24 - T26; + Ip[WS(rs, 1)] = T24 + T26; + Rm[WS(rs, 1)] = T22 + T1S; + Rp[WS(rs, 1)] = T1S - T22; + Im[WS(rs, 4)] = T2k - T2m; + Ip[WS(rs, 4)] = T2k + T2m; + Rm[WS(rs, 4)] = T2i + T2c; + Rp[WS(rs, 4)] = T2c - T2i; + T2q = T2o + T2p; + T2M = T2o - T2p; + T2L = W[18]; + T2O = W[19]; + T2P = T2t - T2u; + T2v = T2t + T2u; + T2N = T2L * T2M; + T2X = T2O * T2M; + T2n = W[6]; + T2s = W[7]; + T2S = T2y - T2z; + T2A = T2y + T2z; + T2F = T2D - T2E; + T2V = T2D + T2E; + T2r = T2n * T2q; + T2H = T2s * T2q; + T2x = W[8]; + T2R = W[20]; + T2J = T2x * T2F; + T2B = T2x * T2A; + } + T2w = FNMS(T2s, T2v, T2r); + T2Z = T2R * T2V; + T2T = T2R * T2S; + T2I = FMA(T2n, T2v, T2H); + T2C = W[9]; + T2Q = FNMS(T2O, T2P, T2N); + T2Y = FMA(T2L, T2P, T2X); + T2U = W[21]; + T2K = FNMS(T2C, T2A, T2J); + T2G = FMA(T2C, T2F, T2B); + } + } + } + } + T30 = FNMS(T2U, T2S, T2Z); + T2W = FMA(T2U, T2V, T2T); + Im[WS(rs, 2)] = T2K - T2I; + Ip[WS(rs, 2)] = T2I + T2K; + Rm[WS(rs, 2)] = T2w + T2G; + Rp[WS(rs, 2)] = T2w - T2G; + Im[WS(rs, 5)] = T30 - T2Y; + Ip[WS(rs, 5)] = T2Y + T30; + Rm[WS(rs, 5)] = T2Q + T2W; + Rp[WS(rs, 5)] = T2Q - T2W; + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {96, 22, 46, 0} }; + +void X(codelet_hc2cbdft_12) (planner *p) { + X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h */ + +/* + * This function contains 142 FP additions, 60 FP multiplications, + * (or, 112 additions, 30 multiplications, 30 fused multiply/add), + * 47 stack variables, 2 constants, and 48 memory accesses + */ +#include "hc2cb.h" + +static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN; + E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O; + { + E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV; + T1 = Rp[0]; + Tq = Ip[0]; + T6 = Rm[WS(rs, 5)]; + TA = Im[WS(rs, 5)]; + { + E T2, T3, Tr, Ts; + T2 = Rp[WS(rs, 4)]; + T3 = Rm[WS(rs, 3)]; + T4 = T2 + T3; + Tp = KP866025403 * (T2 - T3); + Tr = Im[WS(rs, 3)]; + Ts = Ip[WS(rs, 4)]; + Tt = Tr - Ts; + TS = KP866025403 * (Tr + Ts); + } + { + E T7, T8, Tx, Ty; + T7 = Rm[WS(rs, 1)]; + T8 = Rp[WS(rs, 2)]; + T9 = T7 + T8; + Tw = KP866025403 * (T7 - T8); + Tx = Im[WS(rs, 1)]; + Ty = Ip[WS(rs, 2)]; + Tz = Tx - Ty; + TV = KP866025403 * (Tx + Ty); + } + { + E Tu, TB, TU, TR; + Tu = FMA(KP500000000, Tt, Tq); + Tv = Tp + Tu; + T1E = Tu - Tp; + TB = FMS(KP500000000, Tz, TA); + TC = Tw + TB; + T1F = TB - Tw; + TU = FNMS(KP500000000, T9, T6); + TW = TU + TV; + T1x = TU - TV; + TR = FNMS(KP500000000, T4, T1); + TT = TR - TS; + T1w = TR + TS; + { + E T1b, T1c, T5, Ta; + T1b = Tq - Tt; + T1c = Tz + TA; + T1d = T1b - T1c; + T1N = T1b + T1c; + T5 = T1 + T4; + Ta = T6 + T9; + Tb = T5 + Ta; + T1R = T5 - Ta; + } + } + } + { + E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14; + Tc = Rp[WS(rs, 3)]; + T10 = Ip[WS(rs, 3)]; + Th = Rm[WS(rs, 2)]; + T15 = Im[WS(rs, 2)]; + { + E Td, Te, TF, TG; + Td = Rm[WS(rs, 4)]; + Te = Rm[0]; + Tf = Td + Te; + TY = KP866025403 * (Td - Te); + TF = Im[WS(rs, 4)]; + TG = Im[0]; + TH = KP866025403 * (TF - TG); + TZ = TF + TG; + } + { + E Ti, Tj, TK, TL; + Ti = Rp[WS(rs, 1)]; + Tj = Rp[WS(rs, 5)]; + Tk = Ti + Tj; + T13 = KP866025403 * (Ti - Tj); + TK = Ip[WS(rs, 5)]; + TL = Ip[WS(rs, 1)]; + TM = KP866025403 * (TK - TL); + T14 = TK + TL; + } + { + E TE, TJ, T16, T11; + TE = FNMS(KP500000000, Tf, Tc); + TI = TE + TH; + T1z = TE - TH; + TJ = FNMS(KP500000000, Tk, Th); + TN = TJ + TM; + T1A = TJ - TM; + T16 = FMA(KP500000000, T14, T15); + T17 = T13 - T16; + T1I = T13 + T16; + T11 = FMA(KP500000000, TZ, T10); + T12 = TY + T11; + T1H = T11 - TY; + { + E T1e, T1f, Tg, Tl; + T1e = T10 - TZ; + T1f = T14 - T15; + T1g = T1e + T1f; + T1S = T1e - T1f; + Tg = Tc + Tf; + Tl = Th + Tk; + Tm = Tg + Tl; + T1O = Tg - Tl; + } + } + } + { + E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t; + Tn = Tb + Tm; + T1h = T1d + T1g; + { + E TD, TO, TX, T18; + TD = Tv - TC; + TO = TI - TN; + TP = TD + TO; + T1p = TD - TO; + TX = TT - TW; + T18 = T12 - T17; + T19 = TX - T18; + T1r = TX + T18; + { + E T1k, T1m, T1j, T1l; + T1k = Tb - Tm; + T1m = T1d - T1g; + T1j = W[10]; + T1l = W[11]; + T1n = FNMS(T1l, T1m, T1j * T1k); + T1t = FMA(T1l, T1k, T1j * T1m); + } + } + { + E T1a, T1i, To, TQ; + To = W[0]; + TQ = W[1]; + T1a = FMA(To, TP, TQ * T19); + T1i = FNMS(TQ, TP, To * T19); + Rp[0] = Tn - T1a; + Ip[0] = T1h + T1i; + Rm[0] = Tn + T1a; + Im[0] = T1i - T1h; + } + { + E T1s, T1u, T1o, T1q; + T1o = W[12]; + T1q = W[13]; + T1s = FMA(T1o, T1p, T1q * T1r); + T1u = FNMS(T1q, T1p, T1o * T1r); + Rp[WS(rs, 3)] = T1n - T1s; + Ip[WS(rs, 3)] = T1t + T1u; + Rm[WS(rs, 3)] = T1n + T1s; + Im[WS(rs, 3)] = T1u - T1t; + } + } + { + E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27; + { + E T1y, T1B, T1G, T1J; + T1y = T1w + T1x; + T1B = T1z + T1A; + T1C = T1y - T1B; + T1Y = T1y + T1B; + T1G = T1E + T1F; + T1J = T1H - T1I; + T1K = T1G - T1J; + T20 = T1G + T1J; + } + { + E T1P, T1T, T1M, T1Q; + T1P = T1N - T1O; + T1T = T1R + T1S; + T1M = W[4]; + T1Q = W[5]; + T1U = FMA(T1M, T1P, T1Q * T1T); + T1V = FNMS(T1Q, T1P, T1M * T1T); + } + { + E T23, T25, T22, T24; + T23 = T1O + T1N; + T25 = T1R - T1S; + T22 = W[16]; + T24 = W[17]; + T26 = FMA(T22, T23, T24 * T25); + T27 = FNMS(T24, T23, T22 * T25); + } + { + E T1L, T1W, T1v, T1D; + T1v = W[2]; + T1D = W[3]; + T1L = FNMS(T1D, T1K, T1v * T1C); + T1W = FMA(T1D, T1C, T1v * T1K); + Rp[WS(rs, 1)] = T1L - T1U; + Ip[WS(rs, 1)] = T1V + T1W; + Rm[WS(rs, 1)] = T1U + T1L; + Im[WS(rs, 1)] = T1V - T1W; + } + { + E T21, T28, T1X, T1Z; + T1X = W[14]; + T1Z = W[15]; + T21 = FNMS(T1Z, T20, T1X * T1Y); + T28 = FMA(T1Z, T1Y, T1X * T20); + Rp[WS(rs, 4)] = T21 - T26; + Ip[WS(rs, 4)] = T27 + T28; + Rm[WS(rs, 4)] = T26 + T21; + Im[WS(rs, 4)] = T27 - T28; + } + } + { + E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z; + { + E T2a, T2b, T2n, T2o; + T2a = TT + TW; + T2b = TI + TN; + T2c = T2a + T2b; + T2u = T2a - T2b; + T2n = T1w - T1x; + T2o = T1H + T1I; + T2p = T2n - T2o; + T2B = T2n + T2o; + } + { + E T2e, T2f, T2j, T2k; + T2e = Tv + TC; + T2f = T12 + T17; + T2g = T2e + T2f; + T2w = T2e - T2f; + T2j = T1E - T1F; + T2k = T1z - T1A; + T2l = T2j + T2k; + T2z = T2j - T2k; + } + { + E T2h, T2r, T2q, T2s; + { + E T29, T2d, T2i, T2m; + T29 = W[6]; + T2d = W[7]; + T2h = FNMS(T2d, T2g, T29 * T2c); + T2r = FMA(T2d, T2c, T29 * T2g); + T2i = W[8]; + T2m = W[9]; + T2q = FMA(T2i, T2l, T2m * T2p); + T2s = FNMS(T2m, T2l, T2i * T2p); + } + Rp[WS(rs, 2)] = T2h - T2q; + Ip[WS(rs, 2)] = T2r + T2s; + Rm[WS(rs, 2)] = T2h + T2q; + Im[WS(rs, 2)] = T2s - T2r; + } + { + E T2x, T2D, T2C, T2E; + { + E T2t, T2v, T2y, T2A; + T2t = W[18]; + T2v = W[19]; + T2x = FNMS(T2v, T2w, T2t * T2u); + T2D = FMA(T2v, T2u, T2t * T2w); + T2y = W[20]; + T2A = W[21]; + T2C = FMA(T2y, T2z, T2A * T2B); + T2E = FNMS(T2A, T2z, T2y * T2B); + } + Rp[WS(rs, 5)] = T2x - T2C; + Ip[WS(rs, 5)] = T2D + T2E; + Rm[WS(rs, 5)] = T2x + T2C; + Im[WS(rs, 5)] = T2E - T2D; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {112, 30, 30, 0} }; + +void X(codelet_hc2cbdft_12) (planner *p) { + X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT); +} +#endif /* HAVE_FMA */