Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb_12.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/scalar/r2cb/hc2cb_12.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,582 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Sun Nov 25 07:41:53 EST 2012 */ + +#include "codelet-rdft.h" + +#ifdef HAVE_FMA + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include hc2cb.h */ + +/* + * This function contains 118 FP additions, 68 FP multiplications, + * (or, 72 additions, 22 multiplications, 46 fused multiply/add), + * 64 stack variables, 2 constants, and 48 memory accesses + */ +#include "hc2cb.h" + +static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E T1U, T1X, T1W, T1Y, T1V; + { + E T18, T20, T21, T1b, T2a, T1s, T29, T1p, TO, T11, To, Tb, Tg, T23, T1f; + E Tl, Ty, Tt, T1i, T24, T1z, T2d, T1w, T2c; + { + E T5, Ta, TN, TI; + { + E T1, TE, T6, TM, T7, T1o, T4, T17, TH, T8, TJ, TK; + T1 = Rp[0]; + TE = Ip[0]; + T6 = Rm[WS(rs, 5)]; + TM = Im[WS(rs, 5)]; + { + E T2, T3, TF, TG; + T2 = Rp[WS(rs, 4)]; + T3 = Rm[WS(rs, 3)]; + TF = Ip[WS(rs, 4)]; + TG = Im[WS(rs, 3)]; + T7 = Rm[WS(rs, 1)]; + T1o = T2 - T3; + T4 = T2 + T3; + T17 = TF + TG; + TH = TF - TG; + T8 = Rp[WS(rs, 2)]; + TJ = Ip[WS(rs, 2)]; + TK = Im[WS(rs, 1)]; + } + { + E T1r, T1a, T19, T1q, T9, TL, T16, T1n; + T5 = T1 + T4; + T16 = FNMS(KP500000000, T4, T1); + T1r = T7 - T8; + T9 = T7 + T8; + T1a = TJ + TK; + TL = TJ - TK; + T18 = FNMS(KP866025403, T17, T16); + T20 = FMA(KP866025403, T17, T16); + T19 = FNMS(KP500000000, T9, T6); + Ta = T6 + T9; + TN = TL - TM; + T1q = FMA(KP500000000, TL, TM); + T1n = FNMS(KP500000000, TH, TE); + TI = TE + TH; + T21 = FNMS(KP866025403, T1a, T19); + T1b = FMA(KP866025403, T1a, T19); + T2a = FMA(KP866025403, T1r, T1q); + T1s = FNMS(KP866025403, T1r, T1q); + T29 = FNMS(KP866025403, T1o, T1n); + T1p = FMA(KP866025403, T1o, T1n); + } + } + { + E Tc, Tp, Th, Tx, Ti, Tf, T1v, Ts, T1e, Tj, Tu, Tv; + Tc = Rp[WS(rs, 3)]; + TO = TI - TN; + T11 = TI + TN; + Tp = Ip[WS(rs, 3)]; + To = T5 - Ta; + Tb = T5 + Ta; + Th = Rm[WS(rs, 2)]; + Tx = Im[WS(rs, 2)]; + { + E Td, Te, Tq, Tr; + Td = Rm[WS(rs, 4)]; + Te = Rm[0]; + Tq = Im[WS(rs, 4)]; + Tr = Im[0]; + Ti = Rp[WS(rs, 1)]; + Tf = Td + Te; + T1v = Td - Te; + Ts = Tq + Tr; + T1e = Tq - Tr; + Tj = Rp[WS(rs, 5)]; + Tu = Ip[WS(rs, 1)]; + Tv = Ip[WS(rs, 5)]; + } + { + E T1y, T1h, T1g, T1x, Tk, Tw, T1d, T1u; + T1d = FNMS(KP500000000, Tf, Tc); + Tg = Tc + Tf; + Tk = Ti + Tj; + T1y = Ti - Tj; + Tw = Tu + Tv; + T1h = Tv - Tu; + T23 = FNMS(KP866025403, T1e, T1d); + T1f = FMA(KP866025403, T1e, T1d); + Tl = Th + Tk; + T1g = FNMS(KP500000000, Tk, Th); + T1x = FMA(KP500000000, Tw, Tx); + Ty = Tw - Tx; + Tt = Tp - Ts; + T1u = FMA(KP500000000, Ts, Tp); + T1i = FMA(KP866025403, T1h, T1g); + T24 = FNMS(KP866025403, T1h, T1g); + T1z = FNMS(KP866025403, T1y, T1x); + T2d = FMA(KP866025403, T1y, T1x); + T1w = FMA(KP866025403, T1v, T1u); + T2c = FNMS(KP866025403, T1v, T1u); + } + } + } + { + E TY, T13, TX, T10; + { + E Tn, T12, TC, Tm, TD, TS, TA, Tz; + Tn = W[16]; + T12 = Tt + Ty; + Tz = Tt - Ty; + TC = W[17]; + Tm = Tg + Tl; + TD = Tg - Tl; + TS = To + Tz; + TA = To - Tz; + { + E TV, TU, TW, TT; + { + E TQ, TR, TP, TB; + TV = TO - TD; + TP = TD + TO; + Rp[0] = Tb + Tm; + TB = Tn * TA; + TQ = Tn * TP; + TR = W[4]; + Ip[WS(rs, 4)] = FNMS(TC, TP, TB); + TU = W[5]; + Im[WS(rs, 4)] = FMA(TC, TA, TQ); + TW = TR * TV; + TT = TR * TS; + } + Im[WS(rs, 1)] = FMA(TU, TS, TW); + Ip[WS(rs, 1)] = FNMS(TU, TV, TT); + TY = Tb - Tm; + T13 = T11 - T12; + TX = W[10]; + T10 = W[11]; + Rm[0] = T11 + T12; + } + } + { + E T1K, T1Q, T1P, T1L, T2o, T2u, T2t, T2p; + { + E T1E, T1D, T1H, T1F, T1G, T1t, T1k, T1A; + { + E T1c, TZ, T14, T1j; + T1K = T18 - T1b; + T1c = T18 + T1b; + TZ = TX * TY; + T14 = T10 * TY; + T1j = T1f + T1i; + T1Q = T1f - T1i; + T1P = T1p + T1s; + T1t = T1p - T1s; + Rp[WS(rs, 3)] = FNMS(T10, T13, TZ); + Rm[WS(rs, 3)] = FMA(TX, T13, T14); + T1E = T1c + T1j; + T1k = T1c - T1j; + T1A = T1w - T1z; + T1L = T1w + T1z; + } + { + E T15, T1m, T1B, T1l, T1C; + T15 = W[18]; + T1m = W[19]; + T1D = W[6]; + T1H = T1t + T1A; + T1B = T1t - T1A; + T1l = T15 * T1k; + T1C = T1m * T1k; + T1F = T1D * T1E; + T1G = W[7]; + Rp[WS(rs, 5)] = FNMS(T1m, T1B, T1l); + Rm[WS(rs, 5)] = FMA(T15, T1B, T1C); + } + { + E T26, T2i, T2l, T2f, T1Z, T28; + { + E T22, T1I, T25, T2b, T2e; + T22 = T20 + T21; + T2o = T20 - T21; + Rp[WS(rs, 2)] = FNMS(T1G, T1H, T1F); + T1I = T1G * T1E; + T2u = T23 - T24; + T25 = T23 + T24; + T2b = T29 - T2a; + T2t = T29 + T2a; + T2p = T2c + T2d; + T2e = T2c - T2d; + Rm[WS(rs, 2)] = FMA(T1D, T1H, T1I); + T26 = T22 - T25; + T2i = T22 + T25; + T2l = T2b + T2e; + T2f = T2b - T2e; + } + T1Z = W[2]; + T28 = W[3]; + { + E T2h, T2k, T27, T2g, T2j, T2m; + T2h = W[14]; + T2k = W[15]; + T27 = T1Z * T26; + T2g = T28 * T26; + T2j = T2h * T2i; + T2m = T2k * T2i; + Rp[WS(rs, 1)] = FNMS(T28, T2f, T27); + Rm[WS(rs, 1)] = FMA(T1Z, T2f, T2g); + Rp[WS(rs, 4)] = FNMS(T2k, T2l, T2j); + Rm[WS(rs, 4)] = FMA(T2h, T2l, T2m); + } + } + } + { + E T2y, T2B, T2A, T2C, T2z; + { + E T2n, T2q, T2v, T2s, T2r, T2x, T2w; + T2n = W[8]; + T2y = T2o + T2p; + T2q = T2o - T2p; + T2B = T2t - T2u; + T2v = T2t + T2u; + T2s = W[9]; + T2r = T2n * T2q; + T2x = W[20]; + T2w = T2n * T2v; + T2A = W[21]; + Ip[WS(rs, 2)] = FNMS(T2s, T2v, T2r); + T2C = T2x * T2B; + T2z = T2x * T2y; + Im[WS(rs, 2)] = FMA(T2s, T2q, T2w); + } + Im[WS(rs, 5)] = FMA(T2A, T2y, T2C); + Ip[WS(rs, 5)] = FNMS(T2A, T2B, T2z); + { + E T1J, T1M, T1R, T1O, T1N, T1T, T1S; + T1J = W[0]; + T1U = T1K + T1L; + T1M = T1K - T1L; + T1X = T1P - T1Q; + T1R = T1P + T1Q; + T1O = W[1]; + T1N = T1J * T1M; + T1T = W[12]; + T1S = T1J * T1R; + T1W = W[13]; + Ip[0] = FNMS(T1O, T1R, T1N); + T1Y = T1T * T1X; + T1V = T1T * T1U; + Im[0] = FMA(T1O, T1M, T1S); + } + } + } + } + } + Im[WS(rs, 3)] = FMA(T1W, T1U, T1Y); + Ip[WS(rs, 3)] = FNMS(T1W, T1X, T1V); + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, {72, 22, 46, 0} }; + +void X(codelet_hc2cb_12) (planner *p) { + X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT); +} +#else /* HAVE_FMA */ + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include hc2cb.h */ + +/* + * This function contains 118 FP additions, 60 FP multiplications, + * (or, 88 additions, 30 multiplications, 30 fused multiply/add), + * 39 stack variables, 2 constants, and 48 memory accesses + */ +#include "hc2cb.h" + +static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { + E T5, TH, T12, T1M, T1i, T1U, Tl, Ty, T1c, T1Y, T1s, T1Q, Ta, TM, T15; + E T1N, T1l, T1V, Tg, Tt, T19, T1X, T1p, T1P; + { + E T1, TD, T4, T1g, TG, T11, T10, T1h; + T1 = Rp[0]; + TD = Ip[0]; + { + E T2, T3, TE, TF; + T2 = Rp[WS(rs, 4)]; + T3 = Rm[WS(rs, 3)]; + T4 = T2 + T3; + T1g = KP866025403 * (T2 - T3); + TE = Ip[WS(rs, 4)]; + TF = Im[WS(rs, 3)]; + TG = TE - TF; + T11 = KP866025403 * (TE + TF); + } + T5 = T1 + T4; + TH = TD + TG; + T10 = FNMS(KP500000000, T4, T1); + T12 = T10 - T11; + T1M = T10 + T11; + T1h = FNMS(KP500000000, TG, TD); + T1i = T1g + T1h; + T1U = T1h - T1g; + } + { + E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q; + Th = Rm[WS(rs, 2)]; + Tx = Im[WS(rs, 2)]; + { + E Ti, Tj, Tu, Tv; + Ti = Rp[WS(rs, 1)]; + Tj = Rp[WS(rs, 5)]; + Tk = Ti + Tj; + T1a = KP866025403 * (Ti - Tj); + Tu = Ip[WS(rs, 1)]; + Tv = Ip[WS(rs, 5)]; + Tw = Tu + Tv; + T1r = KP866025403 * (Tv - Tu); + } + Tl = Th + Tk; + Ty = Tw - Tx; + T1b = FMA(KP500000000, Tw, Tx); + T1c = T1a - T1b; + T1Y = T1a + T1b; + T1q = FNMS(KP500000000, Tk, Th); + T1s = T1q + T1r; + T1Q = T1q - T1r; + } + { + E T6, TL, T9, T1j, TK, T14, T13, T1k; + T6 = Rm[WS(rs, 5)]; + TL = Im[WS(rs, 5)]; + { + E T7, T8, TI, TJ; + T7 = Rm[WS(rs, 1)]; + T8 = Rp[WS(rs, 2)]; + T9 = T7 + T8; + T1j = KP866025403 * (T7 - T8); + TI = Ip[WS(rs, 2)]; + TJ = Im[WS(rs, 1)]; + TK = TI - TJ; + T14 = KP866025403 * (TI + TJ); + } + Ta = T6 + T9; + TM = TK - TL; + T13 = FNMS(KP500000000, T9, T6); + T15 = T13 + T14; + T1N = T13 - T14; + T1k = FMA(KP500000000, TK, TL); + T1l = T1j - T1k; + T1V = T1j + T1k; + } + { + E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n; + Tc = Rp[WS(rs, 3)]; + Tp = Ip[WS(rs, 3)]; + { + E Td, Te, Tq, Tr; + Td = Rm[WS(rs, 4)]; + Te = Rm[0]; + Tf = Td + Te; + T17 = KP866025403 * (Td - Te); + Tq = Im[WS(rs, 4)]; + Tr = Im[0]; + Ts = Tq + Tr; + T1o = KP866025403 * (Tq - Tr); + } + Tg = Tc + Tf; + Tt = Tp - Ts; + T18 = FMA(KP500000000, Ts, Tp); + T19 = T17 + T18; + T1X = T18 - T17; + T1n = FNMS(KP500000000, Tf, Tc); + T1p = T1n + T1o; + T1P = T1n - T1o; + } + { + E Tb, Tm, TU, TW, TX, TY, TT, TV; + Tb = T5 + Ta; + Tm = Tg + Tl; + TU = Tb - Tm; + TW = TH + TM; + TX = Tt + Ty; + TY = TW - TX; + Rp[0] = Tb + Tm; + Rm[0] = TW + TX; + TT = W[10]; + TV = W[11]; + Rp[WS(rs, 3)] = FNMS(TV, TY, TT * TU); + Rm[WS(rs, 3)] = FMA(TV, TU, TT * TY); + } + { + E TA, TQ, TO, TS; + { + E To, Tz, TC, TN; + To = T5 - Ta; + Tz = Tt - Ty; + TA = To - Tz; + TQ = To + Tz; + TC = Tg - Tl; + TN = TH - TM; + TO = TC + TN; + TS = TN - TC; + } + { + E Tn, TB, TP, TR; + Tn = W[16]; + TB = W[17]; + Ip[WS(rs, 4)] = FNMS(TB, TO, Tn * TA); + Im[WS(rs, 4)] = FMA(Tn, TO, TB * TA); + TP = W[4]; + TR = W[5]; + Ip[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); + Im[WS(rs, 1)] = FMA(TP, TS, TR * TQ); + } + } + { + E T28, T2e, T2c, T2g; + { + E T26, T27, T2a, T2b; + T26 = T1M - T1N; + T27 = T1X + T1Y; + T28 = T26 - T27; + T2e = T26 + T27; + T2a = T1U + T1V; + T2b = T1P - T1Q; + T2c = T2a + T2b; + T2g = T2a - T2b; + } + { + E T25, T29, T2d, T2f; + T25 = W[8]; + T29 = W[9]; + Ip[WS(rs, 2)] = FNMS(T29, T2c, T25 * T28); + Im[WS(rs, 2)] = FMA(T25, T2c, T29 * T28); + T2d = W[20]; + T2f = W[21]; + Ip[WS(rs, 5)] = FNMS(T2f, T2g, T2d * T2e); + Im[WS(rs, 5)] = FMA(T2d, T2g, T2f * T2e); + } + } + { + E T1S, T22, T20, T24; + { + E T1O, T1R, T1W, T1Z; + T1O = T1M + T1N; + T1R = T1P + T1Q; + T1S = T1O - T1R; + T22 = T1O + T1R; + T1W = T1U - T1V; + T1Z = T1X - T1Y; + T20 = T1W - T1Z; + T24 = T1W + T1Z; + } + { + E T1L, T1T, T21, T23; + T1L = W[2]; + T1T = W[3]; + Rp[WS(rs, 1)] = FNMS(T1T, T20, T1L * T1S); + Rm[WS(rs, 1)] = FMA(T1T, T1S, T1L * T20); + T21 = W[14]; + T23 = W[15]; + Rp[WS(rs, 4)] = FNMS(T23, T24, T21 * T22); + Rm[WS(rs, 4)] = FMA(T23, T22, T21 * T24); + } + } + { + E T1C, T1I, T1G, T1K; + { + E T1A, T1B, T1E, T1F; + T1A = T12 + T15; + T1B = T1p + T1s; + T1C = T1A - T1B; + T1I = T1A + T1B; + T1E = T1i + T1l; + T1F = T19 + T1c; + T1G = T1E - T1F; + T1K = T1E + T1F; + } + { + E T1z, T1D, T1H, T1J; + T1z = W[18]; + T1D = W[19]; + Rp[WS(rs, 5)] = FNMS(T1D, T1G, T1z * T1C); + Rm[WS(rs, 5)] = FMA(T1D, T1C, T1z * T1G); + T1H = W[6]; + T1J = W[7]; + Rp[WS(rs, 2)] = FNMS(T1J, T1K, T1H * T1I); + Rm[WS(rs, 2)] = FMA(T1J, T1I, T1H * T1K); + } + } + { + E T1e, T1w, T1u, T1y; + { + E T16, T1d, T1m, T1t; + T16 = T12 - T15; + T1d = T19 - T1c; + T1e = T16 - T1d; + T1w = T16 + T1d; + T1m = T1i - T1l; + T1t = T1p - T1s; + T1u = T1m + T1t; + T1y = T1m - T1t; + } + { + E TZ, T1f, T1v, T1x; + TZ = W[0]; + T1f = W[1]; + Ip[0] = FNMS(T1f, T1u, TZ * T1e); + Im[0] = FMA(TZ, T1u, T1f * T1e); + T1v = W[12]; + T1x = W[13]; + Ip[WS(rs, 3)] = FNMS(T1x, T1y, T1v * T1w); + Im[WS(rs, 3)] = FMA(T1v, T1y, T1x * T1w); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 12}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, {88, 30, 30, 0} }; + +void X(codelet_hc2cb_12) (planner *p) { + X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT); +} +#endif /* HAVE_FMA */